PAM仿生袋鼠腿悬架建模及动态响应特性研究

IF 0.8 4区 工程技术 Q4 ACOUSTICS International Journal of Acoustics and Vibration Pub Date : 2020-06-30 DOI:10.20855/ijav.2020.25.21676
S. Yong, Jiahao Shi, Zhanlong Li, Jinyi Lian, Q. Shi, B. Yan
{"title":"PAM仿生袋鼠腿悬架建模及动态响应特性研究","authors":"S. Yong, Jiahao Shi, Zhanlong Li, Jinyi Lian, Q. Shi, B. Yan","doi":"10.20855/ijav.2020.25.21676","DOIUrl":null,"url":null,"abstract":"A PAM (pneumatic artificial muscle) bionic kangaroo leg suspension is proposed on the basis of a kangaroo leg structure evolved from long-term hopping; the modelling and characteristics research are conducted to pursue a high-performance vehicle suspension system. Based on the PAM and kangaroo leg bone proportions, the bionic suspension structure is constructed by analysing and refining the kangaroo leg structure and functions. The dynamic equations are derived by the Lagrange’s Equations considering the rods system features and an Adams simulation model is built up to study the damping performance and parameter characteristics of the suspension. Moreover, a co-simulation of Adams and Matlab is performed under fuzzy control and PID control. The dynamic response characteristics of the suspension is simulated and analysed under the passive and active modes in the time and frequency domains. The result indicates that the vibration and shock of the vehicle body can be reduced effectively by the proposed suspension in passive, fuzzy control and PID control modes; compared with the passive mode, the damping performance of the suspension is better under the active control. The fuzzy control and the PID control are effective to reduce the suspension transmissibility, especially in the medium frequency ranges, and the two control effects are better than that of the passive mode in most frequency bands. The study result of this paper can provide a reference for the research and development of high-performance bionic suspension.","PeriodicalId":49185,"journal":{"name":"International Journal of Acoustics and Vibration","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modelling and Dynamic Response Characteristics Study of a PAM Bionic Kangaroo Leg Suspension\",\"authors\":\"S. Yong, Jiahao Shi, Zhanlong Li, Jinyi Lian, Q. Shi, B. Yan\",\"doi\":\"10.20855/ijav.2020.25.21676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A PAM (pneumatic artificial muscle) bionic kangaroo leg suspension is proposed on the basis of a kangaroo leg structure evolved from long-term hopping; the modelling and characteristics research are conducted to pursue a high-performance vehicle suspension system. Based on the PAM and kangaroo leg bone proportions, the bionic suspension structure is constructed by analysing and refining the kangaroo leg structure and functions. The dynamic equations are derived by the Lagrange’s Equations considering the rods system features and an Adams simulation model is built up to study the damping performance and parameter characteristics of the suspension. Moreover, a co-simulation of Adams and Matlab is performed under fuzzy control and PID control. The dynamic response characteristics of the suspension is simulated and analysed under the passive and active modes in the time and frequency domains. The result indicates that the vibration and shock of the vehicle body can be reduced effectively by the proposed suspension in passive, fuzzy control and PID control modes; compared with the passive mode, the damping performance of the suspension is better under the active control. The fuzzy control and the PID control are effective to reduce the suspension transmissibility, especially in the medium frequency ranges, and the two control effects are better than that of the passive mode in most frequency bands. The study result of this paper can provide a reference for the research and development of high-performance bionic suspension.\",\"PeriodicalId\":49185,\"journal\":{\"name\":\"International Journal of Acoustics and Vibration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Acoustics and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.20855/ijav.2020.25.21676\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Acoustics and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.20855/ijav.2020.25.21676","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

摘要

在袋鼠长时间跳跃进化而来的腿部结构的基础上,提出了一种PAM(气动人工肌肉)仿生袋鼠腿悬架;为实现高性能汽车悬架系统,对悬架系统进行了建模和特性研究。基于PAM和袋鼠腿骨比例,通过分析和细化袋鼠腿的结构和功能,构建了仿生悬浮结构。根据拉格朗日方程推导了悬架的动力学方程,并建立了Adams仿真模型,研究了悬架的阻尼性能和参数特性。在模糊控制和PID控制下进行了Adams和Matlab的联合仿真。对悬架在被动模式和主动模式下的动态响应特性进行了时域和频域仿真分析。结果表明,该悬架在被动控制、模糊控制和PID控制三种控制方式下均能有效降低车身的振动和冲击;与被动控制相比,主动控制下悬架的阻尼性能更好。模糊控制和PID控制都能有效降低悬架的传递率,特别是在中频范围内,并且在大多数频段内两者的控制效果都优于无源模式。本文的研究结果可为高性能仿生悬架的研究与开发提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling and Dynamic Response Characteristics Study of a PAM Bionic Kangaroo Leg Suspension
A PAM (pneumatic artificial muscle) bionic kangaroo leg suspension is proposed on the basis of a kangaroo leg structure evolved from long-term hopping; the modelling and characteristics research are conducted to pursue a high-performance vehicle suspension system. Based on the PAM and kangaroo leg bone proportions, the bionic suspension structure is constructed by analysing and refining the kangaroo leg structure and functions. The dynamic equations are derived by the Lagrange’s Equations considering the rods system features and an Adams simulation model is built up to study the damping performance and parameter characteristics of the suspension. Moreover, a co-simulation of Adams and Matlab is performed under fuzzy control and PID control. The dynamic response characteristics of the suspension is simulated and analysed under the passive and active modes in the time and frequency domains. The result indicates that the vibration and shock of the vehicle body can be reduced effectively by the proposed suspension in passive, fuzzy control and PID control modes; compared with the passive mode, the damping performance of the suspension is better under the active control. The fuzzy control and the PID control are effective to reduce the suspension transmissibility, especially in the medium frequency ranges, and the two control effects are better than that of the passive mode in most frequency bands. The study result of this paper can provide a reference for the research and development of high-performance bionic suspension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Acoustics and Vibration
International Journal of Acoustics and Vibration ACOUSTICS-ENGINEERING, MECHANICAL
CiteScore
1.60
自引率
10.00%
发文量
0
审稿时长
12 months
期刊介绍: The International Journal of Acoustics and Vibration (IJAV) is the refereed open-access journal of the International Institute of Acoustics and Vibration (IIAV). The IIAV is a non-profit international scientific society founded in 1995. The primary objective of the Institute is to advance the science of acoustics and vibration by creating an international organization that is responsive to the needs of scientists and engineers concerned with acoustics and vibration problems all around the world. Manuscripts of articles, technical notes and letters-to-the-editor should be submitted to the Editor-in-Chief via the on-line submission system. Authors wishing to submit an article need to log in on the IJAV website first. Users logged into the website are able to submit new articles, track the status of their articles already submitted, upload revised articles, responses and/or rebuttals to reviewers, figures, biographies, photographs, copyright transfer agreements, and send comments to the editor. Each time the status of an article submitted changes, the author will also be notified automatically by email. IIAV members (in good standing for at least six months) can publish in IJAV free of charge and their papers will be displayed on-line immediately after they have been edited and laid-out. Non-IIAV members will be required to pay a mandatory Article Processing Charge (APC) of $200 USD if the manuscript is accepted for publication after review. The APC fee allows IIAV to make your research freely available to all readers using the Open Access model. In addition, Non-IIAV members who pay an extra voluntary publication fee (EVPF) of $500 USD will be granted expedited publication in the IJAV Journal and their papers can be displayed on the Internet after acceptance. If the $200 USD (APC) publication fee is not honored, papers will not be published. Authors who do not pay the voluntary fixed fee of $500 USD will have their papers published but there may be a considerable delay. The English text of the papers must be of high quality. If the text submitted is of low quality the manuscript will be more than likely rejected. For authors whose first language is not English, we recommend having their manuscripts reviewed and edited prior to submission by a native English speaker with scientific expertise. There are many commercial editing services which can provide this service at a cost to the authors.
期刊最新文献
Surge Motion Passive Control of TLP with Double Horizontal Tuned Mass Dampers Numerical and Experimental Evaluation of Hydrodynamic Bearings Applied to a Jeffcott Test Bench Experimental and Numerical Investigation on the Flow-Induced Interior Noise Based on Pellicular Analysis Application of Statistical Energy Analysis (SEA) in Estimating Acoustic Response of Panels With Non-Uniform Mass Distribution Railways: An Acoustical Point of View
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1