{"title":"利用Factsage分析直接碳燃料电池(DCFC)熔融碳酸盐中木质素反应的废气组成","authors":"U. L. Compaore, O. Savadogo, K. Oishi","doi":"10.1115/1.4062162","DOIUrl":null,"url":null,"abstract":"\n The most studied Molten Carbonate-Direct Carbon Fuel Cel (MC-LFC) or Molten Carbonate Direct Carbon Fuel Cell (MC-DCFC) prototypes are those which are fed by fossil fuel. Substituting these fossilized fuels in the MC-DCFC operation with lignin, which is a bio-based carbon, may make this system more efficient, clean, and sustainable. The manipulation module (Mixture) and the computational module (Equilib) of the Factsage package were used to simulate two systems that can represent the anodic compartment of a direct carbon fuel cell based on MC-DCFC. The first system includes lignin and a mixture of molten carbonate (Li2CO3-Na2CO3-Cs2CO3). The second system uses the same first electrolyte system but with the addition of CO2 gas. The results show the formation of mixed gases in the anodic compartment which are composed of H2, CO, CO2, CH4 and H2O. The relative concentration of each of the species of this mixed gas has an impact on the efficiency of the MC-DCFC. How the relative concentration of these gases in this electrolyte can impact the performance parameters of the MC-DCFC is systematically analysed. If the operating conditions of the fuel cell are optimized to get a gas composition of mainly of CO2 with low amounts of H2, CO, CH4, H2O in the anode compartment of the MC-DCFC, This will help to improve the conversion efficiency of lignin fuel in the MC-DCFC.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"1 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exhaust gas composition of lignin reactions in molten carbonate salt of Direct Carbon Fuel Cell (DCFC) using Factsage\",\"authors\":\"U. L. Compaore, O. Savadogo, K. Oishi\",\"doi\":\"10.1115/1.4062162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The most studied Molten Carbonate-Direct Carbon Fuel Cel (MC-LFC) or Molten Carbonate Direct Carbon Fuel Cell (MC-DCFC) prototypes are those which are fed by fossil fuel. Substituting these fossilized fuels in the MC-DCFC operation with lignin, which is a bio-based carbon, may make this system more efficient, clean, and sustainable. The manipulation module (Mixture) and the computational module (Equilib) of the Factsage package were used to simulate two systems that can represent the anodic compartment of a direct carbon fuel cell based on MC-DCFC. The first system includes lignin and a mixture of molten carbonate (Li2CO3-Na2CO3-Cs2CO3). The second system uses the same first electrolyte system but with the addition of CO2 gas. The results show the formation of mixed gases in the anodic compartment which are composed of H2, CO, CO2, CH4 and H2O. The relative concentration of each of the species of this mixed gas has an impact on the efficiency of the MC-DCFC. How the relative concentration of these gases in this electrolyte can impact the performance parameters of the MC-DCFC is systematically analysed. If the operating conditions of the fuel cell are optimized to get a gas composition of mainly of CO2 with low amounts of H2, CO, CH4, H2O in the anode compartment of the MC-DCFC, This will help to improve the conversion efficiency of lignin fuel in the MC-DCFC.\",\"PeriodicalId\":15579,\"journal\":{\"name\":\"Journal of Electrochemical Energy Conversion and Storage\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Energy Conversion and Storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062162\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Energy Conversion and Storage","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062162","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Exhaust gas composition of lignin reactions in molten carbonate salt of Direct Carbon Fuel Cell (DCFC) using Factsage
The most studied Molten Carbonate-Direct Carbon Fuel Cel (MC-LFC) or Molten Carbonate Direct Carbon Fuel Cell (MC-DCFC) prototypes are those which are fed by fossil fuel. Substituting these fossilized fuels in the MC-DCFC operation with lignin, which is a bio-based carbon, may make this system more efficient, clean, and sustainable. The manipulation module (Mixture) and the computational module (Equilib) of the Factsage package were used to simulate two systems that can represent the anodic compartment of a direct carbon fuel cell based on MC-DCFC. The first system includes lignin and a mixture of molten carbonate (Li2CO3-Na2CO3-Cs2CO3). The second system uses the same first electrolyte system but with the addition of CO2 gas. The results show the formation of mixed gases in the anodic compartment which are composed of H2, CO, CO2, CH4 and H2O. The relative concentration of each of the species of this mixed gas has an impact on the efficiency of the MC-DCFC. How the relative concentration of these gases in this electrolyte can impact the performance parameters of the MC-DCFC is systematically analysed. If the operating conditions of the fuel cell are optimized to get a gas composition of mainly of CO2 with low amounts of H2, CO, CH4, H2O in the anode compartment of the MC-DCFC, This will help to improve the conversion efficiency of lignin fuel in the MC-DCFC.
期刊介绍:
The Journal of Electrochemical Energy Conversion and Storage focuses on processes, components, devices and systems that store and convert electrical and chemical energy. This journal publishes peer-reviewed archival scholarly articles, research papers, technical briefs, review articles, perspective articles, and special volumes. Specific areas of interest include electrochemical engineering, electrocatalysis, novel materials, analysis and design of components, devices, and systems, balance of plant, novel numerical and analytical simulations, advanced materials characterization, innovative material synthesis and manufacturing methods, thermal management, reliability, durability, and damage tolerance.