生物吸附剂去除活性蓝203染料:等温线、动力学和热力学研究

M. Bagheri, M. Nasiri, B. Bahrami
{"title":"生物吸附剂去除活性蓝203染料:等温线、动力学和热力学研究","authors":"M. Bagheri, M. Nasiri, B. Bahrami","doi":"10.15171/AJEHE.2018.12","DOIUrl":null,"url":null,"abstract":"Nowadays, due to increasing usage of dye in various industries and its destructive effects on health and environment, it is necessary to remove dyes from industrial wastes. Although few studies can be found on using pine cone for removal of different dyes, it has not been used yet to remove Reactive Blue 203 (RB203) dye. The purpose of this study is to investigate RB203 dye adsorption using activated carbon produced from pine cone. Optimal values of influencing factors for RB203 dye removal were obtained. The results showed that the maximum removal was occurred at a pH of 2, temperature of 30˚C, dye concentration of 30 mg/L, adsorbent dosage of 100 mg/L, and contact time of 15 min. The maximum removal percentage was 98.48%. In order to study the synthesized activated carbon, some characterization methods including scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy and Brunauer-Emmett-Teller (BET) have been used. Investigation of adsorption isotherm models revealed that adsorption of RB203dye can be described through D-R and Temkin isotherm models. Additionally, RB203 dye removal follows the pseudo-firstorder kinetic equation.","PeriodicalId":8672,"journal":{"name":"Avicenna Journal of Environmental Health Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Reactive Blue 203 dye Removal Using Biosorbent: A Study of Isotherms, Kinetics, and Thermodynamics\",\"authors\":\"M. Bagheri, M. Nasiri, B. Bahrami\",\"doi\":\"10.15171/AJEHE.2018.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, due to increasing usage of dye in various industries and its destructive effects on health and environment, it is necessary to remove dyes from industrial wastes. Although few studies can be found on using pine cone for removal of different dyes, it has not been used yet to remove Reactive Blue 203 (RB203) dye. The purpose of this study is to investigate RB203 dye adsorption using activated carbon produced from pine cone. Optimal values of influencing factors for RB203 dye removal were obtained. The results showed that the maximum removal was occurred at a pH of 2, temperature of 30˚C, dye concentration of 30 mg/L, adsorbent dosage of 100 mg/L, and contact time of 15 min. The maximum removal percentage was 98.48%. In order to study the synthesized activated carbon, some characterization methods including scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy and Brunauer-Emmett-Teller (BET) have been used. Investigation of adsorption isotherm models revealed that adsorption of RB203dye can be described through D-R and Temkin isotherm models. Additionally, RB203 dye removal follows the pseudo-firstorder kinetic equation.\",\"PeriodicalId\":8672,\"journal\":{\"name\":\"Avicenna Journal of Environmental Health Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Avicenna Journal of Environmental Health Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15171/AJEHE.2018.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avicenna Journal of Environmental Health Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15171/AJEHE.2018.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 3

摘要

如今,由于染料在各个行业中的使用越来越多,其对健康和环境的破坏性影响,有必要从工业废物中去除染料。虽然很少有研究发现用松果体去除不同的染料,但它还没有被用于去除活性蓝203(RB203)染料。本研究的目的是研究用松果体生产的活性炭吸附RB203染料。得出了影响RB203染料去除的最佳因素值。结果表明,最大去除率发生在pH为2、温度为30˚C、染料浓度为30mg/L、吸附剂用量为100mg/L、接触时间为15min时。最大去除率为98.48%。为了研究合成的活性炭,傅立叶变换红外光谱(FT-IR)和Brunauer-Emmett-Teller(BET)已经被使用。对吸附等温线模型的研究表明,RB203染料的吸附可以用D-R和Temkin等温线模型来描述。此外,RB203染料去除遵循伪一阶动力学方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reactive Blue 203 dye Removal Using Biosorbent: A Study of Isotherms, Kinetics, and Thermodynamics
Nowadays, due to increasing usage of dye in various industries and its destructive effects on health and environment, it is necessary to remove dyes from industrial wastes. Although few studies can be found on using pine cone for removal of different dyes, it has not been used yet to remove Reactive Blue 203 (RB203) dye. The purpose of this study is to investigate RB203 dye adsorption using activated carbon produced from pine cone. Optimal values of influencing factors for RB203 dye removal were obtained. The results showed that the maximum removal was occurred at a pH of 2, temperature of 30˚C, dye concentration of 30 mg/L, adsorbent dosage of 100 mg/L, and contact time of 15 min. The maximum removal percentage was 98.48%. In order to study the synthesized activated carbon, some characterization methods including scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR) spectroscopy and Brunauer-Emmett-Teller (BET) have been used. Investigation of adsorption isotherm models revealed that adsorption of RB203dye can be described through D-R and Temkin isotherm models. Additionally, RB203 dye removal follows the pseudo-firstorder kinetic equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Avicenna Journal of Environmental Health Engineering
Avicenna Journal of Environmental Health Engineering Environmental Science-Health, Toxicology and Mutagenesis
CiteScore
1.00
自引率
0.00%
发文量
8
审稿时长
8 weeks
期刊最新文献
Predictive Modeling for Forecasting Air Quality Index (AQI) Using Time Series Analysis The Removal of Methylene Blue from Aqueous Solutions Using Zinc Oxide Nanoparticles With Hydrogen Peroxide Optimization and Isothermal Studies of Antibiotics Mixture Biosorption From Wastewater Using Palm Kernel, Chrysophyllum albidum, and Coconut Shells Biocomposite The Burden of Diseases From Exposure to Environmental Cigarette Smoke: A Case Study of Municipal Staff in Qazvin, Iran Spatial Distribution of Lead in the Soil of Urban Areas Under Different Land-Use Types
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1