基于SOI平台的一维横向磁保偏光子晶体波导

IF 0.5 Q4 OPTICS Photonics Letters of Poland Pub Date : 2020-09-30 DOI:10.4302/PLP.V12I3.1044
N. L. Kazanskiy, M. A. Butt
{"title":"基于SOI平台的一维横向磁保偏光子晶体波导","authors":"N. L. Kazanskiy, M. A. Butt","doi":"10.4302/PLP.V12I3.1044","DOIUrl":null,"url":null,"abstract":"In this letter, a TM-polarization C-band pass one-dimensional photonic crystal strip waveguide (1D-PCSW) is presented. The waveguide structure is based on a silicon-on-insulator platform which is easy to realize using standard CMOS technology. The numerical study is conducted via 3D-finite element method (FEM). The transmittance and polarization extinction ratio (PER) is enhanced by optimizing the geometric parameters of the device. As a result, a TM polarized light can travel in the waveguide with ~2 dB loss for all C-band telecommunication wavelength window whereas the TE polarized light suffers a high transmission loss of >30 dB. As a result, a PER of ~28.5 dB can be obtained for the whole C-band wavelengths range. The total length of the proposed device is around 8.4 µm long including 1 µm silicon strip waveguide segment on both ends. Based on our study presented in this paper, several photonic devices can be realized where strict polarization filtering is required. Full Text: PDF References B. Wang, S. Blaize, R.S-Montiel, \"Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics\", Nanoscale, 11, 20685 (2019). CrossRef D. Dai, J.E. Bowers, \"Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects\", Nanophotonics, 3, 283 (2014). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, \"Optical elements based on silicon photonics\", Computer Optics, 43, 1079 (2019). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, \"Compact design of a polarization beam splitter based on silicon-on-insulator platform\", Laser Physics, 28, 116202 (2018). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, \"A T-shaped 1  ×  8 balanced optical power splitter based on 90° bend asymmetric vertical slot waveguides\", Laser Physics, 29, 046207 (2019). CrossRef Q. Wang, S.-T. Ho, \"Ultracompact TM-Pass Silicon Nanophotonic Waveguide Polarizer and Design\", IEEE Photonics J., 2, 49 (2010). CrossRef C.-H. Chen, L. Pang, C.-H. Tsai, U. Levy, Y. Fainman, \"Compact and integrated TM-pass waveguide polarizer\", Opt. Express, 13, 5347 (2005). CrossRef S. Yuan, Y. Wang, Q. Huang, J. Xia, J. Yu, \"Ultracompact TM-pass/TE-reflected integrated polarizer based on a hybrid plasmonic waveguide for silicon photonics\", in 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 183-184. CrossRef X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, D. Dai, \"Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide\", Opt. Lett., 39, 4514 (2014). CrossRef A.E.- S. Abd-Elkader, M.F. O. Hameed, N.F. Areed, H.E.-D. Mostafa, and S.S. Obayya, \"Ultracompact AZO-based TE-pass and TM-pass hybrid plasmonic polarizers\", J.Opt. Soc. Am. B., 36, 652 (2019). CrossRef J. Li et al., \"Photonic Crystal Waveguide Electro-Optic Modulator With a Wide Bandwidth\", Journal of Lightwave Technology, 31, 1601-1607 (2013). CrossRef N. Skivesen et al., \"Photonic-crystal waveguide biosensor\", Optics Express, 15, 3169-3176 (2007). CrossRef S. Lin, J. Hu, L. Kimerling, K. Crozier, \"Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection\", Optics Letters, 34, 3451-3453 (2009). CrossRef T. Liu, A.R. Zakharian, M. Fallahi, J.V. Moloney, M. Mansuripur, \"Design of a compact photonic-crystal-based polarizing beam splitter\", IEEE Photonics Technology Letters, 17, 1435-1437 (2005). CrossRef R. K. Sinha, Y. Kalra, \"Design of optical waveguide polarizer using photonic band gap\", Optics Express, 14, 10790 (2006). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"85-87"},"PeriodicalIF":0.5000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"One-dimensional photonic crystal waveguide based on SOI platform for transverse magnetic polarization-maintaining devices\",\"authors\":\"N. L. Kazanskiy, M. A. Butt\",\"doi\":\"10.4302/PLP.V12I3.1044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, a TM-polarization C-band pass one-dimensional photonic crystal strip waveguide (1D-PCSW) is presented. The waveguide structure is based on a silicon-on-insulator platform which is easy to realize using standard CMOS technology. The numerical study is conducted via 3D-finite element method (FEM). The transmittance and polarization extinction ratio (PER) is enhanced by optimizing the geometric parameters of the device. As a result, a TM polarized light can travel in the waveguide with ~2 dB loss for all C-band telecommunication wavelength window whereas the TE polarized light suffers a high transmission loss of >30 dB. As a result, a PER of ~28.5 dB can be obtained for the whole C-band wavelengths range. The total length of the proposed device is around 8.4 µm long including 1 µm silicon strip waveguide segment on both ends. Based on our study presented in this paper, several photonic devices can be realized where strict polarization filtering is required. Full Text: PDF References B. Wang, S. Blaize, R.S-Montiel, \\\"Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics\\\", Nanoscale, 11, 20685 (2019). CrossRef D. Dai, J.E. Bowers, \\\"Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects\\\", Nanophotonics, 3, 283 (2014). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, \\\"Optical elements based on silicon photonics\\\", Computer Optics, 43, 1079 (2019). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, \\\"Compact design of a polarization beam splitter based on silicon-on-insulator platform\\\", Laser Physics, 28, 116202 (2018). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, \\\"A T-shaped 1  ×  8 balanced optical power splitter based on 90° bend asymmetric vertical slot waveguides\\\", Laser Physics, 29, 046207 (2019). CrossRef Q. Wang, S.-T. Ho, \\\"Ultracompact TM-Pass Silicon Nanophotonic Waveguide Polarizer and Design\\\", IEEE Photonics J., 2, 49 (2010). CrossRef C.-H. Chen, L. Pang, C.-H. Tsai, U. Levy, Y. Fainman, \\\"Compact and integrated TM-pass waveguide polarizer\\\", Opt. Express, 13, 5347 (2005). CrossRef S. Yuan, Y. Wang, Q. Huang, J. Xia, J. Yu, \\\"Ultracompact TM-pass/TE-reflected integrated polarizer based on a hybrid plasmonic waveguide for silicon photonics\\\", in 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 183-184. CrossRef X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, D. Dai, \\\"Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide\\\", Opt. Lett., 39, 4514 (2014). CrossRef A.E.- S. Abd-Elkader, M.F. O. Hameed, N.F. Areed, H.E.-D. Mostafa, and S.S. Obayya, \\\"Ultracompact AZO-based TE-pass and TM-pass hybrid plasmonic polarizers\\\", J.Opt. Soc. Am. B., 36, 652 (2019). CrossRef J. Li et al., \\\"Photonic Crystal Waveguide Electro-Optic Modulator With a Wide Bandwidth\\\", Journal of Lightwave Technology, 31, 1601-1607 (2013). CrossRef N. Skivesen et al., \\\"Photonic-crystal waveguide biosensor\\\", Optics Express, 15, 3169-3176 (2007). CrossRef S. Lin, J. Hu, L. Kimerling, K. Crozier, \\\"Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection\\\", Optics Letters, 34, 3451-3453 (2009). CrossRef T. Liu, A.R. Zakharian, M. Fallahi, J.V. Moloney, M. Mansuripur, \\\"Design of a compact photonic-crystal-based polarizing beam splitter\\\", IEEE Photonics Technology Letters, 17, 1435-1437 (2005). CrossRef R. K. Sinha, Y. Kalra, \\\"Design of optical waveguide polarizer using photonic band gap\\\", Optics Express, 14, 10790 (2006). CrossRef\",\"PeriodicalId\":20055,\"journal\":{\"name\":\"Photonics Letters of Poland\",\"volume\":\"12 1\",\"pages\":\"85-87\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Letters of Poland\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4302/PLP.V12I3.1044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/PLP.V12I3.1044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种TM偏振C带通一维光子晶体条形波导(1D-PCSW)。波导结构基于绝缘体上硅平台,使用标准CMOS技术很容易实现。数值研究采用三维有限元法进行。通过优化器件的几何参数,提高了透射率和偏振消光比。因此,对于所有C波段电信波长窗口,TM偏振光可以在波导中传播,损耗约为2dB,而TE偏振光的传输损耗高达>30dB。因此,对于整个C波段波长范围,可以获得约28.5dB的PER。所提出的器件的总长度约为8.4µm,包括两端的1µm硅带波导段。基于我们在本文中提出的研究,在需要严格偏振滤波的情况下,可以实现几种光子器件。全文:PDF参考文献B.Wang,S.Blaize,R.S-Montiel,“集成在硅光子学上的纳米级等离子体TM通偏振器”,Nanoscale,1120685(2019)。CrossRef D.Dai,J.E.Bowers,“用于Peta-bit光学互连的基于硅的片上复用技术和器件”,纳米光子学,3283(2014)。CrossRef M.A.Butt,S.N.Khonina,N.L.Kazanskiy,“基于硅光子学的光学元件”,计算机光学,431079(2019)。CrossRef M.A.Butt,S.N.Khonina,N.L.Kazanskiy,“基于绝缘体上硅平台的偏振分束器的紧凑设计”,激光物理学,2811202(2018)。CrossRef M.A.Butt,S.N.Khonina,N.L.Kazanskiy,“T形1  ×  8基于90°弯曲非对称垂直缝隙波导的平衡光功率分配器”,激光物理,29046207(2019)。CrossRef Q.Wang,S.-T.Ho,“超紧凑TM通硅纳米光子波导偏振器与设计”,IEEE Photonics J.,2,49(2010)。CrossRef C.-H.Chen,L.Pang,C.-H.Cai,U.Levy,Y。Fainman,“紧凑型集成TM通波导偏振器”,Opt。Express,135347(2005)。CrossRef S.Yuan,Y.Wang,Q.Huang,J.Xia,J.Yu,“用于硅光子学的基于混合等离子体波导的超紧凑TM通/TE反射集成偏振器”,第11届国际第四组光子会议(GFP)(IEEE,2014),第183-184页。关,陈,陈,徐,施,戴,“硅亚波长光栅波导低损耗超小型横向磁通偏振器”,Opt。Lett。,394514(2014)。CrossRef A.E.-S.Abd Elkader,M.F.O.Hameed,N.F.Areed,H.E.D.Mostafa和S.S.Obayya,“超紧凑AZO基TE通和TM通混合等离子体偏振器”,J.Opt.Soc.Am.B.,36652(2019)。CrossRef J.Li等人,“宽带宽光子晶体波导电光调制器”,光波技术杂志,311601-1607(2013)。CrossRef N.Skivesen等人,“光子晶体波导生物传感器”,Optics Express,153169-3176(2007)。CrossRef S.Lin,J.Hu,L.Kimerling,K.Crozier,“用于单个纳米颗粒捕获和检测的纳米槽光子晶体波导腔的设计”,Optics Letters,3451-3453(2009)。CrossRef T.Liu,A.R.Zakharian,M.Fallahi,J.V.Moloney,M.Mansuripur,“基于紧凑型光子晶体的偏振分束器的设计”,IEEE光子技术快报,17435-1437(2005)。CrossRef R.K.Sinha,Y.Kalra,“利用光子带隙设计光波导偏振器”,Optics Express,1410790(2006)。CrossRef
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
One-dimensional photonic crystal waveguide based on SOI platform for transverse magnetic polarization-maintaining devices
In this letter, a TM-polarization C-band pass one-dimensional photonic crystal strip waveguide (1D-PCSW) is presented. The waveguide structure is based on a silicon-on-insulator platform which is easy to realize using standard CMOS technology. The numerical study is conducted via 3D-finite element method (FEM). The transmittance and polarization extinction ratio (PER) is enhanced by optimizing the geometric parameters of the device. As a result, a TM polarized light can travel in the waveguide with ~2 dB loss for all C-band telecommunication wavelength window whereas the TE polarized light suffers a high transmission loss of >30 dB. As a result, a PER of ~28.5 dB can be obtained for the whole C-band wavelengths range. The total length of the proposed device is around 8.4 µm long including 1 µm silicon strip waveguide segment on both ends. Based on our study presented in this paper, several photonic devices can be realized where strict polarization filtering is required. Full Text: PDF References B. Wang, S. Blaize, R.S-Montiel, "Nanoscale plasmonic TM-pass polarizer integrated on silicon photonics", Nanoscale, 11, 20685 (2019). CrossRef D. Dai, J.E. Bowers, "Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects", Nanophotonics, 3, 283 (2014). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "Optical elements based on silicon photonics", Computer Optics, 43, 1079 (2019). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "Compact design of a polarization beam splitter based on silicon-on-insulator platform", Laser Physics, 28, 116202 (2018). CrossRef M.A. Butt, S.N. Khonina, N.L. Kazanskiy, "A T-shaped 1  ×  8 balanced optical power splitter based on 90° bend asymmetric vertical slot waveguides", Laser Physics, 29, 046207 (2019). CrossRef Q. Wang, S.-T. Ho, "Ultracompact TM-Pass Silicon Nanophotonic Waveguide Polarizer and Design", IEEE Photonics J., 2, 49 (2010). CrossRef C.-H. Chen, L. Pang, C.-H. Tsai, U. Levy, Y. Fainman, "Compact and integrated TM-pass waveguide polarizer", Opt. Express, 13, 5347 (2005). CrossRef S. Yuan, Y. Wang, Q. Huang, J. Xia, J. Yu, "Ultracompact TM-pass/TE-reflected integrated polarizer based on a hybrid plasmonic waveguide for silicon photonics", in 11th International Conference on Group IV Photonics (GFP) (IEEE, 2014), pp. 183-184. CrossRef X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, D. Dai, "Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide", Opt. Lett., 39, 4514 (2014). CrossRef A.E.- S. Abd-Elkader, M.F. O. Hameed, N.F. Areed, H.E.-D. Mostafa, and S.S. Obayya, "Ultracompact AZO-based TE-pass and TM-pass hybrid plasmonic polarizers", J.Opt. Soc. Am. B., 36, 652 (2019). CrossRef J. Li et al., "Photonic Crystal Waveguide Electro-Optic Modulator With a Wide Bandwidth", Journal of Lightwave Technology, 31, 1601-1607 (2013). CrossRef N. Skivesen et al., "Photonic-crystal waveguide biosensor", Optics Express, 15, 3169-3176 (2007). CrossRef S. Lin, J. Hu, L. Kimerling, K. Crozier, "Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection", Optics Letters, 34, 3451-3453 (2009). CrossRef T. Liu, A.R. Zakharian, M. Fallahi, J.V. Moloney, M. Mansuripur, "Design of a compact photonic-crystal-based polarizing beam splitter", IEEE Photonics Technology Letters, 17, 1435-1437 (2005). CrossRef R. K. Sinha, Y. Kalra, "Design of optical waveguide polarizer using photonic band gap", Optics Express, 14, 10790 (2006). CrossRef
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
24
期刊最新文献
Making use of Digital Image Correlation to identify the true character of the applied load Technological challenges in the development of silica-titania platform for integrated optics Modelling of Germanium-Based Perovskite Solar Cell for Different Hole Transport Materials and Defect Density Application of fiber optic sensors using Machine Learning algorithms for temperature measurement of lithium-ion batteries Focusing properties of Azimuthally Polarized Lorentz Gauss Vortex Beam through a Dielectric Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1