基于Mask R-CNN的ORB去误匹配方法

IF 0.7 4区 物理与天体物理 Q3 CRYSTALLOGRAPHY 液晶与显示 Pub Date : 2018-08-05 DOI:10.3788/YJYXS20183308.0690
张博, Zhang Bo, 韩广良, Han Guang-liang
{"title":"基于Mask R-CNN的ORB去误匹配方法","authors":"张博, Zhang Bo, 韩广良, Han Guang-liang","doi":"10.3788/YJYXS20183308.0690","DOIUrl":null,"url":null,"abstract":"为了提高多目标图像的ORB匹配的正确率,提出一种基于Mask R-CNN的图像ORB去除误匹配方法,该算法首先通过Faster R-CNN方法对图像进行识别,运用区域推荐网络得到矩形框标注的感兴趣区域和类别标签,该步骤可以得到感兴趣区域的预测类别和坐标信息,并且通过全卷积网络卷积层进行像素级别校正,得到像素级别的目标所属类别,然后进行目标分割。最后在原有ORB特征点匹配基础上,剔除两幅图像中相同目标分割区域以外的误匹配点。为了验证该方法的有效性,对传统ORB匹配与基于本文方法的ORB匹配进行了仿真实验。改进后的算法,使得在多目标环境下的目标的匹配精度提高了约18.6%,结果表明,本文算法较传统的ORB匹配算法的精度有一定提高。","PeriodicalId":10128,"journal":{"name":"液晶与显示","volume":"33 1","pages":"690-696"},"PeriodicalIF":0.7000,"publicationDate":"2018-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"基于Mask R-CNN的ORB去误匹配方法\",\"authors\":\"张博, Zhang Bo, 韩广良, Han Guang-liang\",\"doi\":\"10.3788/YJYXS20183308.0690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"为了提高多目标图像的ORB匹配的正确率,提出一种基于Mask R-CNN的图像ORB去除误匹配方法,该算法首先通过Faster R-CNN方法对图像进行识别,运用区域推荐网络得到矩形框标注的感兴趣区域和类别标签,该步骤可以得到感兴趣区域的预测类别和坐标信息,并且通过全卷积网络卷积层进行像素级别校正,得到像素级别的目标所属类别,然后进行目标分割。最后在原有ORB特征点匹配基础上,剔除两幅图像中相同目标分割区域以外的误匹配点。为了验证该方法的有效性,对传统ORB匹配与基于本文方法的ORB匹配进行了仿真实验。改进后的算法,使得在多目标环境下的目标的匹配精度提高了约18.6%,结果表明,本文算法较传统的ORB匹配算法的精度有一定提高。\",\"PeriodicalId\":10128,\"journal\":{\"name\":\"液晶与显示\",\"volume\":\"33 1\",\"pages\":\"690-696\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"液晶与显示\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3788/YJYXS20183308.0690\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"液晶与显示","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3788/YJYXS20183308.0690","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

为了提高多目标图像的ORB匹配的正确率,提出一种基于Mask R-CNN的图像ORB去除误匹配方法,该算法首先通过Faster R-CNN方法对图像进行识别,运用区域推荐网络得到矩形框标注的感兴趣区域和类别标签,该步骤可以得到感兴趣区域的预测类别和坐标信息,并且通过全卷积网络卷积层进行像素级别校正,得到像素级别的目标所属类别,然后进行目标分割。最后在原有ORB特征点匹配基础上,剔除两幅图像中相同目标分割区域以外的误匹配点。为了验证该方法的有效性,对传统ORB匹配与基于本文方法的ORB匹配进行了仿真实验。改进后的算法,使得在多目标环境下的目标的匹配精度提高了约18.6%,结果表明,本文算法较传统的ORB匹配算法的精度有一定提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Mask R-CNN的ORB去误匹配方法
为了提高多目标图像的ORB匹配的正确率,提出一种基于Mask R-CNN的图像ORB去除误匹配方法,该算法首先通过Faster R-CNN方法对图像进行识别,运用区域推荐网络得到矩形框标注的感兴趣区域和类别标签,该步骤可以得到感兴趣区域的预测类别和坐标信息,并且通过全卷积网络卷积层进行像素级别校正,得到像素级别的目标所属类别,然后进行目标分割。最后在原有ORB特征点匹配基础上,剔除两幅图像中相同目标分割区域以外的误匹配点。为了验证该方法的有效性,对传统ORB匹配与基于本文方法的ORB匹配进行了仿真实验。改进后的算法,使得在多目标环境下的目标的匹配精度提高了约18.6%,结果表明,本文算法较传统的ORB匹配算法的精度有一定提高。
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
液晶与显示
液晶与显示 CRYSTALLOGRAPHY-
CiteScore
1.40
自引率
50.00%
发文量
4939
期刊介绍:
期刊最新文献
Information storage materials based on liquid crystalline networks with programmable colors and shape memory Sub-microsecond electro-optic response in polymer-stabilized dual-frequency blue phase liquid crystals Liquid crystal lens array based on polymer protrusion Alignment methods and function development of deformable liquid crystal polymers Research progress of ferroelectric nematic liquid crystals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1