蜂胶化合物对抗严重急性呼吸系统综合征冠状病毒2型受体的分子对接和相互作用分析

Q4 Agricultural and Biological Sciences Journal of Tropical Life Science Pub Date : 2022-05-17 DOI:10.11594/jtls.12.02.08
M. Syaban, I. Faratisha, K. Yunita, N. Erwan, Dedy Kurniawan, G. Putra
{"title":"蜂胶化合物对抗严重急性呼吸系统综合征冠状病毒2型受体的分子对接和相互作用分析","authors":"M. Syaban, I. Faratisha, K. Yunita, N. Erwan, Dedy Kurniawan, G. Putra","doi":"10.11594/jtls.12.02.08","DOIUrl":null,"url":null,"abstract":"Background: For many people, especially in developing countries, herbal medicine is the most traditional drug choice to treat all diseases including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 infection). Propolis is one of the popular herbal medicine which has various health benefits, particularly antiviral activity. In this molecular docking study, this investigation examined twenty-five kinds of propolis to bind SARS-CoV-2 protein with the main targets of ACE-2 and M-Pro receptors. Method: Propolis ligands were downloaded from PubChem, meanwhile ACE-2 and M-Pro receptors were downloaded from Protein Data Bank. Both ligands and targets were optimized by Pymol. The pharmacokinetic analysis was conducted using SwissADME. Molecular docking was done using PyRx 0.9 and its binding interaction was visualized by Discovery Studio. To predict the potential inhibition, this study compared the ligand-protein complex of propolis to ligands from the previous study. Result: Through the Lipinski rule, only five of twenty-five types of propolis were not qualified for the criterion. The ability to bind protein targets were various between ligands, the highest affinity to ACE-2 receptors were abietic acid, galangin, chrysin, kaempferol and acacetin, respectively. The binding affinity between ligand and M-Pro were seen weaker than ACE-2 receptor, while the strongest were kaempferol, abietic acid, acacetin, galangin and chrysin, respectively. Conclusion: Â Kaempferol is the most potent form of propolis to bind to ACE-2 and M-Pro receptors by assessing the binding affinity and the amount of amino acid residue formation when compared to control ligands. Keywords: ACE-2 receptor, COVID-19, Main protease, Molecular docking, Propolis, SARS-CoV-2","PeriodicalId":17638,"journal":{"name":"Journal of Tropical Life Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Molecular Docking and Interaction Analysis of Propolis Compounds Against SARS-CoV-2 Receptor\",\"authors\":\"M. Syaban, I. Faratisha, K. Yunita, N. Erwan, Dedy Kurniawan, G. Putra\",\"doi\":\"10.11594/jtls.12.02.08\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: For many people, especially in developing countries, herbal medicine is the most traditional drug choice to treat all diseases including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 infection). Propolis is one of the popular herbal medicine which has various health benefits, particularly antiviral activity. In this molecular docking study, this investigation examined twenty-five kinds of propolis to bind SARS-CoV-2 protein with the main targets of ACE-2 and M-Pro receptors. Method: Propolis ligands were downloaded from PubChem, meanwhile ACE-2 and M-Pro receptors were downloaded from Protein Data Bank. Both ligands and targets were optimized by Pymol. The pharmacokinetic analysis was conducted using SwissADME. Molecular docking was done using PyRx 0.9 and its binding interaction was visualized by Discovery Studio. To predict the potential inhibition, this study compared the ligand-protein complex of propolis to ligands from the previous study. Result: Through the Lipinski rule, only five of twenty-five types of propolis were not qualified for the criterion. The ability to bind protein targets were various between ligands, the highest affinity to ACE-2 receptors were abietic acid, galangin, chrysin, kaempferol and acacetin, respectively. The binding affinity between ligand and M-Pro were seen weaker than ACE-2 receptor, while the strongest were kaempferol, abietic acid, acacetin, galangin and chrysin, respectively. Conclusion: Â Kaempferol is the most potent form of propolis to bind to ACE-2 and M-Pro receptors by assessing the binding affinity and the amount of amino acid residue formation when compared to control ligands. Keywords: ACE-2 receptor, COVID-19, Main protease, Molecular docking, Propolis, SARS-CoV-2\",\"PeriodicalId\":17638,\"journal\":{\"name\":\"Journal of Tropical Life Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tropical Life Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11594/jtls.12.02.08\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tropical Life Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11594/jtls.12.02.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 2

摘要

背景:对许多人来说,尤其是在发展中国家,草药是治疗所有疾病的最传统药物选择,包括严重急性呼吸系统综合征冠状病毒2型感染。蜂胶是一种受欢迎的草药,具有多种健康益处,尤其是抗病毒活性。在这项分子对接研究中,本研究检测了25种蜂胶将严重急性呼吸系统综合征冠状病毒2型蛋白与ACE-2和M-Pro受体的主要靶标结合。方法:从PubChem下载蜂胶配体,从蛋白质数据库下载ACE-2和M-Pro受体。Pymol对配体和靶标进行了优化。使用SwissADME进行药代动力学分析。使用PyRx 0.9进行分子对接,其结合相互作用由Discovery Studio可视化。为了预测潜在的抑制作用,本研究将蜂胶的配体-蛋白质复合物与先前研究中的配体进行了比较。结果:通过利平斯基规则,25种蜂胶中只有5种不符合标准。配体之间结合蛋白质靶标的能力各不相同,对ACE-2受体的亲和力最高的分别是枞酸、高良姜素、白杨素、山奈酚和acacetin。配体与M-Pro的结合亲和力弱于ACE-2受体,而最强的分别是山奈酚、枞酸、杨梅素、高良姜素和白杨素。结论:与对照配体相比,山奈酚是通过评估结合亲和力和氨基酸残基形成量来与ACE-2和M-Pro受体结合的最有效的蜂胶形式。关键词:ACE-2受体,新冠肺炎,主要蛋白酶,分子对接,蜂胶,SARS-CoV-2
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molecular Docking and Interaction Analysis of Propolis Compounds Against SARS-CoV-2 Receptor
Background: For many people, especially in developing countries, herbal medicine is the most traditional drug choice to treat all diseases including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 infection). Propolis is one of the popular herbal medicine which has various health benefits, particularly antiviral activity. In this molecular docking study, this investigation examined twenty-five kinds of propolis to bind SARS-CoV-2 protein with the main targets of ACE-2 and M-Pro receptors. Method: Propolis ligands were downloaded from PubChem, meanwhile ACE-2 and M-Pro receptors were downloaded from Protein Data Bank. Both ligands and targets were optimized by Pymol. The pharmacokinetic analysis was conducted using SwissADME. Molecular docking was done using PyRx 0.9 and its binding interaction was visualized by Discovery Studio. To predict the potential inhibition, this study compared the ligand-protein complex of propolis to ligands from the previous study. Result: Through the Lipinski rule, only five of twenty-five types of propolis were not qualified for the criterion. The ability to bind protein targets were various between ligands, the highest affinity to ACE-2 receptors were abietic acid, galangin, chrysin, kaempferol and acacetin, respectively. The binding affinity between ligand and M-Pro were seen weaker than ACE-2 receptor, while the strongest were kaempferol, abietic acid, acacetin, galangin and chrysin, respectively. Conclusion: Â Kaempferol is the most potent form of propolis to bind to ACE-2 and M-Pro receptors by assessing the binding affinity and the amount of amino acid residue formation when compared to control ligands. Keywords: ACE-2 receptor, COVID-19, Main protease, Molecular docking, Propolis, SARS-CoV-2
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Tropical Life Science
Journal of Tropical Life Science Environmental Science-Ecology
CiteScore
1.00
自引率
0.00%
发文量
46
审稿时长
12 weeks
期刊最新文献
Antioxidant Activity of Baby Java Citrus Peel Extract Promotes Lung Tissue Repair in Mice Challenged by Lipopolysaccharides Genome-Wide Analysis of GATA Transcription Factor Family in Quinoa (Chenopodium quinoa): Identification, Characterization, and Expression Profiles The Leaf Extract of Dysoxylum parasiticum (Osbeck) Kosterm. Contains Anti-oxidant and α-Glucosidase Inhibitor Activities Could Road Structures Impact the Avian Community? A Study Case from the South Coast Remained Forest in Malang Region, East Java Province, Indonesia Different Mangrove Rehabilitation Statuses Effects to Benthic Bacterial Structure Community in the Northern Area of Java Island
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1