基于离散小波变换的心电信号去噪:阈值和函数的比较分析

Maskana Pub Date : 2018-06-28 DOI:10.18537/MSKN.09.01.10
M. Gualsaquí, Iván P. Vizcaíno, V. Proano, Marco Flores
{"title":"基于离散小波变换的心电信号去噪:阈值和函数的比较分析","authors":"M. Gualsaquí, Iván P. Vizcaíno, V. Proano, Marco Flores","doi":"10.18537/MSKN.09.01.10","DOIUrl":null,"url":null,"abstract":"The electrocardiogram signal (ECG) is a bio-signal used to determine cardiac health. However, different types of noise that commonly accompany these signals can hide valuable information for diagnosing disorders. The paper presents an experimental study to remove the noise in ECG signals using the Discrete Wavelet Transform (DWT) theory and a set of thresholds filters for efficient noise filtering. For the assessment process, we used ECG records from MIT-BIH Arrhythmia database (MITDB) and standardized noise signals (muscle activity and electrode-skin contact) database from the Noise Stress Test database. In addition to the ECG signals a white Gaussian noise present in electrical type signals was added. Furthermore, as a first step we considered baseline wander and power line interference reduction. The metrics used are the Signal-to-Noise Ratio (SNR), the Root Mean Squared Error (RMSE), the Percent Root mean square Difference (PRD), and the Euclidian L2 Norm standard (L2N). Results reveal that there is not a single combination of filtering thresholds (function and value) to minimize all types of noise and interference present in ECG signals. Reason why an ECG denoising algorithm is proposed which allows choosing the appropriate combination (function-value) threshold, where the SNR values were the maximum and the error values were the minimum.","PeriodicalId":33189,"journal":{"name":"Maskana","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"ECG signal denoising using discrete wavelet transform: A comparative analysis of threshold values and functions\",\"authors\":\"M. Gualsaquí, Iván P. Vizcaíno, V. Proano, Marco Flores\",\"doi\":\"10.18537/MSKN.09.01.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electrocardiogram signal (ECG) is a bio-signal used to determine cardiac health. However, different types of noise that commonly accompany these signals can hide valuable information for diagnosing disorders. The paper presents an experimental study to remove the noise in ECG signals using the Discrete Wavelet Transform (DWT) theory and a set of thresholds filters for efficient noise filtering. For the assessment process, we used ECG records from MIT-BIH Arrhythmia database (MITDB) and standardized noise signals (muscle activity and electrode-skin contact) database from the Noise Stress Test database. In addition to the ECG signals a white Gaussian noise present in electrical type signals was added. Furthermore, as a first step we considered baseline wander and power line interference reduction. The metrics used are the Signal-to-Noise Ratio (SNR), the Root Mean Squared Error (RMSE), the Percent Root mean square Difference (PRD), and the Euclidian L2 Norm standard (L2N). Results reveal that there is not a single combination of filtering thresholds (function and value) to minimize all types of noise and interference present in ECG signals. Reason why an ECG denoising algorithm is proposed which allows choosing the appropriate combination (function-value) threshold, where the SNR values were the maximum and the error values were the minimum.\",\"PeriodicalId\":33189,\"journal\":{\"name\":\"Maskana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maskana\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18537/MSKN.09.01.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maskana","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18537/MSKN.09.01.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

心电图信号(ECG)是一种用于判断心脏健康状况的生物信号。然而,通常伴随这些信号的不同类型的噪声可以隐藏诊断疾病的有价值的信息。本文利用离散小波变换(DWT)理论和一组阈值滤波器对心电信号中的噪声进行了去除实验研究。在评估过程中,我们使用了来自MIT-BIH心律失常数据库(MITDB)的心电图记录和来自噪声压力测试数据库的标准化噪声信号(肌肉活动和电极-皮肤接触)数据库。除了ECG信号外,还加入了存在于电型信号中的高斯白噪声。此外,作为第一步,我们考虑了基线漂移和电力线干扰减少。使用的指标是信噪比(SNR)、均方根误差(RMSE)、均方根差(PRD)百分比和欧几里得L2范数标准(L2N)。结果表明,没有单一的滤波阈值(功能和值)的组合,以尽量减少所有类型的噪声和干扰存在于心电信号。为什么提出一种心电去噪算法,允许选择合适的组合(函数值)阈值,其中信噪比值最大,误差值最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ECG signal denoising using discrete wavelet transform: A comparative analysis of threshold values and functions
The electrocardiogram signal (ECG) is a bio-signal used to determine cardiac health. However, different types of noise that commonly accompany these signals can hide valuable information for diagnosing disorders. The paper presents an experimental study to remove the noise in ECG signals using the Discrete Wavelet Transform (DWT) theory and a set of thresholds filters for efficient noise filtering. For the assessment process, we used ECG records from MIT-BIH Arrhythmia database (MITDB) and standardized noise signals (muscle activity and electrode-skin contact) database from the Noise Stress Test database. In addition to the ECG signals a white Gaussian noise present in electrical type signals was added. Furthermore, as a first step we considered baseline wander and power line interference reduction. The metrics used are the Signal-to-Noise Ratio (SNR), the Root Mean Squared Error (RMSE), the Percent Root mean square Difference (PRD), and the Euclidian L2 Norm standard (L2N). Results reveal that there is not a single combination of filtering thresholds (function and value) to minimize all types of noise and interference present in ECG signals. Reason why an ECG denoising algorithm is proposed which allows choosing the appropriate combination (function-value) threshold, where the SNR values were the maximum and the error values were the minimum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
23 weeks
期刊最新文献
La Casa de la Palabra Aproximación al aprendizaje artístico-visual y digital en la educación superior Calidad de vida en adultos mayores no institucionalizados de Cuenca- Ecuador, 2022 Infecciones COVID-19 posterior a vacunación en la Zona Norte del Ecuador Variables socio-organizacionales y demográficas que influyen en la sostenibilidad organizacional agroecológica
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1