基于n素数的改进全同态加密模型

M. A. Mohammed, F. S. Abed
{"title":"基于n素数的改进全同态加密模型","authors":"M. A. Mohammed, F. S. Abed","doi":"10.24017/science.2019.2.4","DOIUrl":null,"url":null,"abstract":"Cloud computing is the provision of computing services over the internet, which provides unlimited computing capabilities to its users. Cloud Service Providers (CSP) in the distanced places helps the users such as businesses and individuals to use its software and hardware means.  The physical distance between the users and providers allows third parties to be capable of accessing the data which threats the privacy of the users. Thus, its security is the main concern when it comes to transform data from a locally owned storage to cloud storage. Cloud providers are required to save an encrypted version of user’s data on their storage. The traditional encryption schemes have been used for data encryption prior to sending them to the provider. Thought, the secret key has to be provided by the users to the server so as to decrypt the information prior to the requirement of calculations. Therefore, the traditional cryptographic schemes cannot be used to process cloud’s data. After the encryption of the information data are revealed to calculation in clouds, so confidentiality is not guaranteed and this result in difficulty in using cloud. In Homomorphic Encryptions calculation on ciphertext can be performed with no need for decryption.  This paper, develops and designs a new mathematical model to achieve the characteristics of the Fully Homomorphic Encryption. The proposed model’s security depends on the problem of Factorization the integers to their primary numbers. In this paper, instead of dealing with two prime numbers it is expanded to deal with n prime numbers. The security of the presumptive algorithm to be more efficient in front of the security challenges facing cloud computing. What distinguishes this proposed system is that it deals with the explicit text after converting it to the ASCII code instead of converting it to the binary system as it is in the existing systems, thus providing speed in the encryption process and returns the encryption.","PeriodicalId":17866,"journal":{"name":"Kurdistan Journal of Applied Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An improved Fully Homomorphic Encryption model based on N-Primes\",\"authors\":\"M. A. Mohammed, F. S. Abed\",\"doi\":\"10.24017/science.2019.2.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud computing is the provision of computing services over the internet, which provides unlimited computing capabilities to its users. Cloud Service Providers (CSP) in the distanced places helps the users such as businesses and individuals to use its software and hardware means.  The physical distance between the users and providers allows third parties to be capable of accessing the data which threats the privacy of the users. Thus, its security is the main concern when it comes to transform data from a locally owned storage to cloud storage. Cloud providers are required to save an encrypted version of user’s data on their storage. The traditional encryption schemes have been used for data encryption prior to sending them to the provider. Thought, the secret key has to be provided by the users to the server so as to decrypt the information prior to the requirement of calculations. Therefore, the traditional cryptographic schemes cannot be used to process cloud’s data. After the encryption of the information data are revealed to calculation in clouds, so confidentiality is not guaranteed and this result in difficulty in using cloud. In Homomorphic Encryptions calculation on ciphertext can be performed with no need for decryption.  This paper, develops and designs a new mathematical model to achieve the characteristics of the Fully Homomorphic Encryption. The proposed model’s security depends on the problem of Factorization the integers to their primary numbers. In this paper, instead of dealing with two prime numbers it is expanded to deal with n prime numbers. The security of the presumptive algorithm to be more efficient in front of the security challenges facing cloud computing. What distinguishes this proposed system is that it deals with the explicit text after converting it to the ASCII code instead of converting it to the binary system as it is in the existing systems, thus providing speed in the encryption process and returns the encryption.\",\"PeriodicalId\":17866,\"journal\":{\"name\":\"Kurdistan Journal of Applied Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kurdistan Journal of Applied Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24017/science.2019.2.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kurdistan Journal of Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24017/science.2019.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

云计算是通过互联网提供的计算服务,它为用户提供无限的计算能力。远程云服务提供商(CSP)帮助企业和个人等用户使用其软件和硬件手段。用户和提供商之间的物理距离允许第三方能够访问威胁用户隐私的数据。因此,在将数据从本地拥有的存储转换为云存储时,其安全性是主要关注的问题。云提供商需要在其存储设备上保存用户数据的加密版本。在将数据发送给提供者之前,已经使用传统的加密方案进行数据加密。因此,用户必须将密钥提供给服务器,以便在计算需求之前对信息进行解密。因此,传统的加密方案不能用于处理云数据。信息数据经过加密后暴露在云中进行计算,保密性得不到保证,给云的使用带来了困难。在同态加密中,可以在不需要解密的情况下对密文进行计算。本文开发设计了一个新的数学模型来实现完全同态加密的特性。该模型的安全性取决于将整数分解为其主数的问题。在本文中,它由处理两个素数扩展到处理n个素数。在云计算面临的安全挑战面前,假定算法的安全性更加高效。这个系统的不同之处在于,它在将显式文本转换为ASCII码后处理文本,而不是像现有系统那样将其转换为二进制系统,从而提高了加密过程的速度并返回加密。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved Fully Homomorphic Encryption model based on N-Primes
Cloud computing is the provision of computing services over the internet, which provides unlimited computing capabilities to its users. Cloud Service Providers (CSP) in the distanced places helps the users such as businesses and individuals to use its software and hardware means.  The physical distance between the users and providers allows third parties to be capable of accessing the data which threats the privacy of the users. Thus, its security is the main concern when it comes to transform data from a locally owned storage to cloud storage. Cloud providers are required to save an encrypted version of user’s data on their storage. The traditional encryption schemes have been used for data encryption prior to sending them to the provider. Thought, the secret key has to be provided by the users to the server so as to decrypt the information prior to the requirement of calculations. Therefore, the traditional cryptographic schemes cannot be used to process cloud’s data. After the encryption of the information data are revealed to calculation in clouds, so confidentiality is not guaranteed and this result in difficulty in using cloud. In Homomorphic Encryptions calculation on ciphertext can be performed with no need for decryption.  This paper, develops and designs a new mathematical model to achieve the characteristics of the Fully Homomorphic Encryption. The proposed model’s security depends on the problem of Factorization the integers to their primary numbers. In this paper, instead of dealing with two prime numbers it is expanded to deal with n prime numbers. The security of the presumptive algorithm to be more efficient in front of the security challenges facing cloud computing. What distinguishes this proposed system is that it deals with the explicit text after converting it to the ASCII code instead of converting it to the binary system as it is in the existing systems, thus providing speed in the encryption process and returns the encryption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
16
审稿时长
12 weeks
期刊最新文献
A Wavelet Shrinkage Mixed with a Single-level 2D Discrete Wavelet Transform for Image Denoising Assessing the Impact of Modified Initial Abstraction Ratios and Slope Adjusted Curve Number on Runoff Prediction in the Watersheds of Sulaimani Province. Assessment of the Antifungal Activity of PMMA-MgO and PMMA-Ag Nanocomposite Multi-Label Feature Selection with Graph-based Ant Colony Optimization and Generalized Jaccard Similarity Evaluate the Implementation of WHO Infection Prevention and Control Core Components Among Health Care Facilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1