K. Beschorner, Henry Ing, V. Chadha, Anna B. Randolph, Ky Reifler, T. Jacobs
{"title":"根据高频材料特性和小规模地面地形特征预测鞋地面摩擦","authors":"K. Beschorner, Henry Ing, V. Chadha, Anna B. Randolph, Ky Reifler, T. Jacobs","doi":"10.1080/19424280.2023.2199298","DOIUrl":null,"url":null,"abstract":"The prevalence of falling accidents, and the variation in friction performance across shoes (Iraqi, et al., 2020) suggest an opportunity to reduce slips through improved outsole design. A salient source of friction in the presence of liquid contaminants is hysteresis friction, which occurs due to energy loss in the shoe material. This energy loss occurs from cyclic loading caused by the shoe sliding against periodic topographical features of the floor surface. Mechanics models of hysteresis friction suggest that the small-scale topography features of the floor and the high-frequency material response of the shoe are relevant to friction (Heinrich, et al., 2000).","PeriodicalId":45905,"journal":{"name":"Footwear Science","volume":"15 1","pages":"S82 - S83"},"PeriodicalIF":2.7000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shoe-floor friction is predicted by high-frequency material properties and small-scale floor topographical features\",\"authors\":\"K. Beschorner, Henry Ing, V. Chadha, Anna B. Randolph, Ky Reifler, T. Jacobs\",\"doi\":\"10.1080/19424280.2023.2199298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prevalence of falling accidents, and the variation in friction performance across shoes (Iraqi, et al., 2020) suggest an opportunity to reduce slips through improved outsole design. A salient source of friction in the presence of liquid contaminants is hysteresis friction, which occurs due to energy loss in the shoe material. This energy loss occurs from cyclic loading caused by the shoe sliding against periodic topographical features of the floor surface. Mechanics models of hysteresis friction suggest that the small-scale topography features of the floor and the high-frequency material response of the shoe are relevant to friction (Heinrich, et al., 2000).\",\"PeriodicalId\":45905,\"journal\":{\"name\":\"Footwear Science\",\"volume\":\"15 1\",\"pages\":\"S82 - S83\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Footwear Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19424280.2023.2199298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ERGONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Footwear Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19424280.2023.2199298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ERGONOMICS","Score":null,"Total":0}
Shoe-floor friction is predicted by high-frequency material properties and small-scale floor topographical features
The prevalence of falling accidents, and the variation in friction performance across shoes (Iraqi, et al., 2020) suggest an opportunity to reduce slips through improved outsole design. A salient source of friction in the presence of liquid contaminants is hysteresis friction, which occurs due to energy loss in the shoe material. This energy loss occurs from cyclic loading caused by the shoe sliding against periodic topographical features of the floor surface. Mechanics models of hysteresis friction suggest that the small-scale topography features of the floor and the high-frequency material response of the shoe are relevant to friction (Heinrich, et al., 2000).