{"title":"太阳辐射下大跨度屋面系统热行为的实验与仿真分析","authors":"Mingming Wang, Z. Xin, Xuan-Xuan Liu, Tong Ou, Dayang Wang, Yongshan Zhang","doi":"10.1002/tal.2013","DOIUrl":null,"url":null,"abstract":"The large‐span metal roof systems can produce a significant nonuniform temperature effect under solar radiation, leading to potential safety hazards. An experiment is conducted to study the nonuniform thermal behavior of a small‐scale continuous welded stainless steel roof (CWSSR) system under solar radiation. The small‐scale CWSSR system considered different roof slopes and sunward side and nightside. The efficiency of the numerical analysis of the thermal behavior of the roof slab is verified in comparison with the experimental results. Based on the numerical and experimental results, the thermal effect of a full‐scale CWSSR system is studied under different orientations, wind speeds, and atmospheric temperature. Through the analysis of research results, the nonuniform thermal features of the CWSSR system are significant and cannot be overlooked. The temperature difference between the sunward side and nightside roof slab is positively correlated with the roof slope. The thermal behavior of the CWSSR system is greatly influenced by wind speeds but is less affected by orientations and atmospheric temperature.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and simulation analysis of thermal behavior of large‐span roof system under solar radiation\",\"authors\":\"Mingming Wang, Z. Xin, Xuan-Xuan Liu, Tong Ou, Dayang Wang, Yongshan Zhang\",\"doi\":\"10.1002/tal.2013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large‐span metal roof systems can produce a significant nonuniform temperature effect under solar radiation, leading to potential safety hazards. An experiment is conducted to study the nonuniform thermal behavior of a small‐scale continuous welded stainless steel roof (CWSSR) system under solar radiation. The small‐scale CWSSR system considered different roof slopes and sunward side and nightside. The efficiency of the numerical analysis of the thermal behavior of the roof slab is verified in comparison with the experimental results. Based on the numerical and experimental results, the thermal effect of a full‐scale CWSSR system is studied under different orientations, wind speeds, and atmospheric temperature. Through the analysis of research results, the nonuniform thermal features of the CWSSR system are significant and cannot be overlooked. The temperature difference between the sunward side and nightside roof slab is positively correlated with the roof slope. The thermal behavior of the CWSSR system is greatly influenced by wind speeds but is less affected by orientations and atmospheric temperature.\",\"PeriodicalId\":49470,\"journal\":{\"name\":\"Structural Design of Tall and Special Buildings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Design of Tall and Special Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/tal.2013\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.2013","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Experimental and simulation analysis of thermal behavior of large‐span roof system under solar radiation
The large‐span metal roof systems can produce a significant nonuniform temperature effect under solar radiation, leading to potential safety hazards. An experiment is conducted to study the nonuniform thermal behavior of a small‐scale continuous welded stainless steel roof (CWSSR) system under solar radiation. The small‐scale CWSSR system considered different roof slopes and sunward side and nightside. The efficiency of the numerical analysis of the thermal behavior of the roof slab is verified in comparison with the experimental results. Based on the numerical and experimental results, the thermal effect of a full‐scale CWSSR system is studied under different orientations, wind speeds, and atmospheric temperature. Through the analysis of research results, the nonuniform thermal features of the CWSSR system are significant and cannot be overlooked. The temperature difference between the sunward side and nightside roof slab is positively correlated with the roof slope. The thermal behavior of the CWSSR system is greatly influenced by wind speeds but is less affected by orientations and atmospheric temperature.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.