微流体技术测量多壁碳纳米管水分散体的太赫兹吸收特性

IF 1.8 4区 物理与天体物理 Q3 OPTICS International Journal of Optics Pub Date : 2022-11-04 DOI:10.1155/2022/3724306
Yuchai Li, Siyu Qian, Hangyu Zhou, Huimin Jiang, Xue Wang, Bo Su, Cunlin Zhang
{"title":"微流体技术测量多壁碳纳米管水分散体的太赫兹吸收特性","authors":"Yuchai Li, Siyu Qian, Hangyu Zhou, Huimin Jiang, Xue Wang, Bo Su, Cunlin Zhang","doi":"10.1155/2022/3724306","DOIUrl":null,"url":null,"abstract":"Multiwalled carbon nanotubes (MWCNTs) have excellent electronic, mechanical, and structural characteristics; however, their poor dispersion structure and large aggregates severely inhibit their function. A stable MWCNT dispersion in an aqueous solvent has been realized via ultrasonic dispersion and surfactant modification, providing a reference for improving MWCNT dispersion in various materials and solvents. In this study, a cyclic olefin copolymer with high transmittance to terahertz (THz) waves is used to prepare microfluidic chips. Then, the microfluidic and THz technologies are combined to study the THz absorption characteristics of MWCNT aqueous dispersion under different electric field (EF) intensities, magnetic field (MF) intensities, and MF action time. The results show that the THz spectral intensity of MWCNT aqueous dispersion decreases and the absorption coefficient increases with the increase of EF intensity, MF intensity, and MF action time. This phenomenon is explained from a microscopic perspective. The combination of microfluidic and THz technologies provides technical support for studying the characteristics of MWCNT aqueous dispersion and lays a foundation for elucidating the molecular microstructure of MWCNT aqueous dispersion.","PeriodicalId":55995,"journal":{"name":"International Journal of Optics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terahertz Absorption Characteristics of Multiwalled Carbon Nanotube Aqueous Dispersion Measured by Microfluidic Technique\",\"authors\":\"Yuchai Li, Siyu Qian, Hangyu Zhou, Huimin Jiang, Xue Wang, Bo Su, Cunlin Zhang\",\"doi\":\"10.1155/2022/3724306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiwalled carbon nanotubes (MWCNTs) have excellent electronic, mechanical, and structural characteristics; however, their poor dispersion structure and large aggregates severely inhibit their function. A stable MWCNT dispersion in an aqueous solvent has been realized via ultrasonic dispersion and surfactant modification, providing a reference for improving MWCNT dispersion in various materials and solvents. In this study, a cyclic olefin copolymer with high transmittance to terahertz (THz) waves is used to prepare microfluidic chips. Then, the microfluidic and THz technologies are combined to study the THz absorption characteristics of MWCNT aqueous dispersion under different electric field (EF) intensities, magnetic field (MF) intensities, and MF action time. The results show that the THz spectral intensity of MWCNT aqueous dispersion decreases and the absorption coefficient increases with the increase of EF intensity, MF intensity, and MF action time. This phenomenon is explained from a microscopic perspective. The combination of microfluidic and THz technologies provides technical support for studying the characteristics of MWCNT aqueous dispersion and lays a foundation for elucidating the molecular microstructure of MWCNT aqueous dispersion.\",\"PeriodicalId\":55995,\"journal\":{\"name\":\"International Journal of Optics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/3724306\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/3724306","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

多壁碳纳米管(MWCNTs)具有优异的电子、机械和结构特性;然而,它们的分散结构差,聚集体大,严重抑制了它们的功能。通过超声分散和表面活性剂改性,实现了MWCNT在水性溶剂中的稳定分散,为改善MWCNT对各种材料和溶剂的分散提供了参考。在本研究中,使用对太赫兹波具有高透射率的环烯烃共聚物来制备微流体芯片。然后,将微流体技术和太赫兹技术相结合,研究了MWCNT水分散体在不同电场(EF)强度、磁场(MF)强度和MF作用时间下的太赫兹吸收特性。结果表明,随着EF强度、MF强度和MF作用时间的增加,MWCNT水性分散体的太赫兹光谱强度减小,吸收系数增大。这种现象是从微观角度来解释的。微流体和太赫兹技术的结合为研究MWCNT水性分散体的特性提供了技术支持,为阐明MWCNT水分散体的分子微观结构奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Terahertz Absorption Characteristics of Multiwalled Carbon Nanotube Aqueous Dispersion Measured by Microfluidic Technique
Multiwalled carbon nanotubes (MWCNTs) have excellent electronic, mechanical, and structural characteristics; however, their poor dispersion structure and large aggregates severely inhibit their function. A stable MWCNT dispersion in an aqueous solvent has been realized via ultrasonic dispersion and surfactant modification, providing a reference for improving MWCNT dispersion in various materials and solvents. In this study, a cyclic olefin copolymer with high transmittance to terahertz (THz) waves is used to prepare microfluidic chips. Then, the microfluidic and THz technologies are combined to study the THz absorption characteristics of MWCNT aqueous dispersion under different electric field (EF) intensities, magnetic field (MF) intensities, and MF action time. The results show that the THz spectral intensity of MWCNT aqueous dispersion decreases and the absorption coefficient increases with the increase of EF intensity, MF intensity, and MF action time. This phenomenon is explained from a microscopic perspective. The combination of microfluidic and THz technologies provides technical support for studying the characteristics of MWCNT aqueous dispersion and lays a foundation for elucidating the molecular microstructure of MWCNT aqueous dispersion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Optics
International Journal of Optics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
3.40
自引率
5.90%
发文量
28
审稿时长
13 weeks
期刊介绍: International Journal of Optics publishes papers on the nature of light, its properties and behaviours, and its interaction with matter. The journal considers both fundamental and highly applied studies, especially those that promise technological solutions for the next generation of systems and devices. As well as original research, International Journal of Optics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
Dual Optical Injection in Semiconductor Lasers with Zero Henry Factor Study on the Terahertz Spectroscopy Properties of Graphene Quantum Dots Based on Microfluidic Chip Advancements in Synthesis Strategies and Optoelectronic Applications of Bio-Based Photosensitive Polyimides Temperature-Dependent Electromagnetic Surface Wave Supported by Graphene-Loaded Indium Antimonide Planar Structure The Propagation Properties of a Lorentz–Gauss Vortex Beam in a Gradient-Index Medium
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1