{"title":"基于反向风险率的相关复合几何脆弱性模型","authors":"David D. Hanagal","doi":"10.3233/mas-221414","DOIUrl":null,"url":null,"abstract":"Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyze the bivariate data on related survival times (e.g. matched pairs experiments, twin or family data), the shared frailty models were suggested. Shared frailty models are used despite their limitations. To overcome their disadvantages correlated frailty models may be used. In this paper, we introduce the correlated compound geometric frailty models based on reversed hazard rate with three different baseline distributions namely, the generalized log-logistic type I, the generalized log-logistic type II and the modified inverse Weibull. We introduce the Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved in these models. We present a simulation study to compare the true values of the parameters with the estimated values. We also apply the proposed models to the Australian twin data set and a better model is suggested.","PeriodicalId":35000,"journal":{"name":"Model Assisted Statistics and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlated compound geometric frailty models based on reversed hazard rate\",\"authors\":\"David D. Hanagal\",\"doi\":\"10.3233/mas-221414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyze the bivariate data on related survival times (e.g. matched pairs experiments, twin or family data), the shared frailty models were suggested. Shared frailty models are used despite their limitations. To overcome their disadvantages correlated frailty models may be used. In this paper, we introduce the correlated compound geometric frailty models based on reversed hazard rate with three different baseline distributions namely, the generalized log-logistic type I, the generalized log-logistic type II and the modified inverse Weibull. We introduce the Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved in these models. We present a simulation study to compare the true values of the parameters with the estimated values. We also apply the proposed models to the Australian twin data set and a better model is suggested.\",\"PeriodicalId\":35000,\"journal\":{\"name\":\"Model Assisted Statistics and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Model Assisted Statistics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mas-221414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Assisted Statistics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mas-221414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Correlated compound geometric frailty models based on reversed hazard rate
Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyze the bivariate data on related survival times (e.g. matched pairs experiments, twin or family data), the shared frailty models were suggested. Shared frailty models are used despite their limitations. To overcome their disadvantages correlated frailty models may be used. In this paper, we introduce the correlated compound geometric frailty models based on reversed hazard rate with three different baseline distributions namely, the generalized log-logistic type I, the generalized log-logistic type II and the modified inverse Weibull. We introduce the Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved in these models. We present a simulation study to compare the true values of the parameters with the estimated values. We also apply the proposed models to the Australian twin data set and a better model is suggested.
期刊介绍:
Model Assisted Statistics and Applications is a peer reviewed international journal. Model Assisted Statistics means an improvement of inference and analysis by use of correlated information, or an underlying theoretical or design model. This might be the design, adjustment, estimation, or analytical phase of statistical project. This information may be survey generated or coming from an independent source. Original papers in the field of sampling theory, econometrics, time-series, design of experiments, and multivariate analysis will be preferred. Papers of both applied and theoretical topics are acceptable.