{"title":"几何变量对正齿轮体积的影响","authors":"Edmund S. Maputi, R. Arora","doi":"10.1051/smdo/2020003","DOIUrl":null,"url":null,"abstract":"Gear system optimization is currently topical amongst researchers. To this end, problem formulation is key and therefore knowledge of parameter influence and variation behaviour is indispensable. In this research work, four gear volume models were investigated for volume minimization while considering six variables viz. face width, module, pinion tooth, hardness, and pinion and gear shaft diameters. Three algorithms viz. teaching learning-based optimization (TLBO), particle swarm optimization (PSO) and firefly algorithm (FA) are employed to obtain the optimal volume and design parameter variation study. The convergence rate of each algorithm for each gear model is contrasted against other algorithms applied in the study. Experimental runs have also been conducted to determine standard deviation and mean values. Variation studies on the volume objective reflect relevant observations noted for parameter setting and optimization. The results obtained can assist the designer in setting designer preferences with minimal resources expended thereby improving the problem-solving exercise.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/smdo/2020003","citationCount":"0","resultStr":"{\"title\":\"Influence of geometric variables on spur gear volume\",\"authors\":\"Edmund S. Maputi, R. Arora\",\"doi\":\"10.1051/smdo/2020003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gear system optimization is currently topical amongst researchers. To this end, problem formulation is key and therefore knowledge of parameter influence and variation behaviour is indispensable. In this research work, four gear volume models were investigated for volume minimization while considering six variables viz. face width, module, pinion tooth, hardness, and pinion and gear shaft diameters. Three algorithms viz. teaching learning-based optimization (TLBO), particle swarm optimization (PSO) and firefly algorithm (FA) are employed to obtain the optimal volume and design parameter variation study. The convergence rate of each algorithm for each gear model is contrasted against other algorithms applied in the study. Experimental runs have also been conducted to determine standard deviation and mean values. Variation studies on the volume objective reflect relevant observations noted for parameter setting and optimization. The results obtained can assist the designer in setting designer preferences with minimal resources expended thereby improving the problem-solving exercise.\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/smdo/2020003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/smdo/2020003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2020003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Influence of geometric variables on spur gear volume
Gear system optimization is currently topical amongst researchers. To this end, problem formulation is key and therefore knowledge of parameter influence and variation behaviour is indispensable. In this research work, four gear volume models were investigated for volume minimization while considering six variables viz. face width, module, pinion tooth, hardness, and pinion and gear shaft diameters. Three algorithms viz. teaching learning-based optimization (TLBO), particle swarm optimization (PSO) and firefly algorithm (FA) are employed to obtain the optimal volume and design parameter variation study. The convergence rate of each algorithm for each gear model is contrasted against other algorithms applied in the study. Experimental runs have also been conducted to determine standard deviation and mean values. Variation studies on the volume objective reflect relevant observations noted for parameter setting and optimization. The results obtained can assist the designer in setting designer preferences with minimal resources expended thereby improving the problem-solving exercise.
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).