{"title":"Fe/Cu双金属纳米颗粒的绿色合成及其在fenton法脱除蓝色染料中的应用","authors":"M. Atiya, A. K. Hassan, Zainab A. Mahmoud","doi":"10.1680/jenes.22.00025","DOIUrl":null,"url":null,"abstract":"This study relates to synthesizing the bentonite support iron/copper nanoparticles by biosynthesis method using eucalyptus plant leaves extract which was then named (E-Fe/Cu@B-NPs). The synthesized E-Fe/Cu@B-NPs were examined by a set of experiments of heterogeneous Fenton-like process through removing direct blue 15 dye (DB15) from wastewater. The characterization methods were employed on E-Fe/Cu@B-NPs by scanning electron microscopy (SEM), BET, zeta potential (ZP), Fourier transform infrared (FT-IR) spectroscopy and atomic force microscopy (AFM) on the resultant nanoparticles were also checked to ensure the functional groups of the E-Fe/Cu@B-NPs. Some of the operation condition parameters were optimized using Box-Behnken design (BBD) in the batch experiments, these parameters were pH, H2O2 dosage, E-Fe/Cu@B-NPs dosage, initial DB15 concentration, and temperature. The result showed that 94.32% of 57.5 mg/L of DB15 was degraded within 60 minutes with an optimum H2O2 dosage of 7.5 mmol/L, E-Fe/Cu@B-NPs dosage 0.55 g/L, pH 3.5, and temperature 50°C. The kinetic study indicated that the DB15 degradation kinetics were fitted to the second-order kinetic model and the thermodynamic factors proved the non-spontaneous, endothermic, and endergonic process with activation energy E a of 62.961 kJ/mol.","PeriodicalId":15665,"journal":{"name":"Journal of Environmental Engineering and Science","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green synthesis and application of Fe/Cu bimetallic nanoparticles for removal of direct blue dye by Fenton-like process\",\"authors\":\"M. Atiya, A. K. Hassan, Zainab A. Mahmoud\",\"doi\":\"10.1680/jenes.22.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study relates to synthesizing the bentonite support iron/copper nanoparticles by biosynthesis method using eucalyptus plant leaves extract which was then named (E-Fe/Cu@B-NPs). The synthesized E-Fe/Cu@B-NPs were examined by a set of experiments of heterogeneous Fenton-like process through removing direct blue 15 dye (DB15) from wastewater. The characterization methods were employed on E-Fe/Cu@B-NPs by scanning electron microscopy (SEM), BET, zeta potential (ZP), Fourier transform infrared (FT-IR) spectroscopy and atomic force microscopy (AFM) on the resultant nanoparticles were also checked to ensure the functional groups of the E-Fe/Cu@B-NPs. Some of the operation condition parameters were optimized using Box-Behnken design (BBD) in the batch experiments, these parameters were pH, H2O2 dosage, E-Fe/Cu@B-NPs dosage, initial DB15 concentration, and temperature. The result showed that 94.32% of 57.5 mg/L of DB15 was degraded within 60 minutes with an optimum H2O2 dosage of 7.5 mmol/L, E-Fe/Cu@B-NPs dosage 0.55 g/L, pH 3.5, and temperature 50°C. The kinetic study indicated that the DB15 degradation kinetics were fitted to the second-order kinetic model and the thermodynamic factors proved the non-spontaneous, endothermic, and endergonic process with activation energy E a of 62.961 kJ/mol.\",\"PeriodicalId\":15665,\"journal\":{\"name\":\"Journal of Environmental Engineering and Science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Engineering and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jenes.22.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Engineering and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jenes.22.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Green synthesis and application of Fe/Cu bimetallic nanoparticles for removal of direct blue dye by Fenton-like process
This study relates to synthesizing the bentonite support iron/copper nanoparticles by biosynthesis method using eucalyptus plant leaves extract which was then named (E-Fe/Cu@B-NPs). The synthesized E-Fe/Cu@B-NPs were examined by a set of experiments of heterogeneous Fenton-like process through removing direct blue 15 dye (DB15) from wastewater. The characterization methods were employed on E-Fe/Cu@B-NPs by scanning electron microscopy (SEM), BET, zeta potential (ZP), Fourier transform infrared (FT-IR) spectroscopy and atomic force microscopy (AFM) on the resultant nanoparticles were also checked to ensure the functional groups of the E-Fe/Cu@B-NPs. Some of the operation condition parameters were optimized using Box-Behnken design (BBD) in the batch experiments, these parameters were pH, H2O2 dosage, E-Fe/Cu@B-NPs dosage, initial DB15 concentration, and temperature. The result showed that 94.32% of 57.5 mg/L of DB15 was degraded within 60 minutes with an optimum H2O2 dosage of 7.5 mmol/L, E-Fe/Cu@B-NPs dosage 0.55 g/L, pH 3.5, and temperature 50°C. The kinetic study indicated that the DB15 degradation kinetics were fitted to the second-order kinetic model and the thermodynamic factors proved the non-spontaneous, endothermic, and endergonic process with activation energy E a of 62.961 kJ/mol.
期刊介绍:
Journal of Environmental Engineering and Science is an international, peer-reviewed publication providing a forum for the dissemination of environmental research, encouraging interdisciplinary research collaboration to address environmental problems. It addresses all aspects of environmental engineering and applied environmental science, with the exception of noise, radiation and light.