一种新颖的h型鱼道,具有优异的水力特性

IF 2.3 4区 环境科学与生态学 Q3 WATER RESOURCES Journal Of Hydrology And Hydromechanics Pub Date : 2023-02-04 DOI:10.2478/johh-2022-0026
Di Zhang, Chunming Liu, Xiaotao Shi, Yakun Liu, Yingmin Qu
{"title":"一种新颖的h型鱼道,具有优异的水力特性","authors":"Di Zhang, Chunming Liu, Xiaotao Shi, Yakun Liu, Yingmin Qu","doi":"10.2478/johh-2022-0026","DOIUrl":null,"url":null,"abstract":"Abstract Fishway design not only takes into account the swimming abilities of target fishes, but also considers the hydrodynamic characteristics within the fishway. In this study, the flow fields of one vertical-slot fishway (i.e. VSF), five T-shape fishways (i.e. TSF-1~TSF-5) and two H-shape fishways (i.e. HSF-1 and HSF-2) are numerically simulated by solving the three-dimensional Reynolds-averaged Navier-Stokes equations and the K-Omega-SST turbulence model. The numerical results clearly indicate that the hydrodynamic properties of HSF-2 are overall superior to the remaining seven cases, in terms of the time-averaged flow pattern, the time-averaged velocity magnitude, the depth-mean time-averaged velocity magnitude along the vertical-slot section, the volume percentages of the time-averaged velocity magnitude less than some critical values, and the distribution of the time-averaged turbulent kinetic energy. Therefore, HSF-2 is more friendly for fishes with relatively smaller sizes and weaker swimming capacities to transfer upstream. The novel HSF-2 is firstly proposed in this paper, and it is naturally designed during the process of improving the flow regime. Furthermore, the generalizability of the superiority of HSF-2 over VSF and the original T-shape fishway (i.e. TSF-1) has been exhibited with the aid of the numerical results of four operating conditions (i.e. Q = 400 L/s, 600 L/s, 800 L/s and 1000 L/s).","PeriodicalId":50183,"journal":{"name":"Journal Of Hydrology And Hydromechanics","volume":"71 1","pages":"64 - 79"},"PeriodicalIF":2.3000,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel H-shape fishway with excellent hydraulic characteristics\",\"authors\":\"Di Zhang, Chunming Liu, Xiaotao Shi, Yakun Liu, Yingmin Qu\",\"doi\":\"10.2478/johh-2022-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Fishway design not only takes into account the swimming abilities of target fishes, but also considers the hydrodynamic characteristics within the fishway. In this study, the flow fields of one vertical-slot fishway (i.e. VSF), five T-shape fishways (i.e. TSF-1~TSF-5) and two H-shape fishways (i.e. HSF-1 and HSF-2) are numerically simulated by solving the three-dimensional Reynolds-averaged Navier-Stokes equations and the K-Omega-SST turbulence model. The numerical results clearly indicate that the hydrodynamic properties of HSF-2 are overall superior to the remaining seven cases, in terms of the time-averaged flow pattern, the time-averaged velocity magnitude, the depth-mean time-averaged velocity magnitude along the vertical-slot section, the volume percentages of the time-averaged velocity magnitude less than some critical values, and the distribution of the time-averaged turbulent kinetic energy. Therefore, HSF-2 is more friendly for fishes with relatively smaller sizes and weaker swimming capacities to transfer upstream. The novel HSF-2 is firstly proposed in this paper, and it is naturally designed during the process of improving the flow regime. Furthermore, the generalizability of the superiority of HSF-2 over VSF and the original T-shape fishway (i.e. TSF-1) has been exhibited with the aid of the numerical results of four operating conditions (i.e. Q = 400 L/s, 600 L/s, 800 L/s and 1000 L/s).\",\"PeriodicalId\":50183,\"journal\":{\"name\":\"Journal Of Hydrology And Hydromechanics\",\"volume\":\"71 1\",\"pages\":\"64 - 79\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal Of Hydrology And Hydromechanics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2478/johh-2022-0026\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal Of Hydrology And Hydromechanics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2478/johh-2022-0026","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 1

摘要

摘要鱼道设计不仅考虑了目标鱼类的游泳能力,还考虑了鱼道内的水动力特性。本研究通过求解三维雷诺平均Navier-Stokes方程和K-Omega-SST湍流模型,对一个垂直槽式鱼道(即VSF)、五个T形鱼道(TSF-1~TSF-5)和两个H形鱼道的流场进行了数值模拟。数值结果清楚地表明,HSF-2的水动力特性总体上优于其余七种情况,包括时间平均流型、时间平均速度大小、沿垂直槽段的深度平均时间平均速度值、时间平均速率大小的体积百分比小于一些临界值,以及时间平均的湍流动能的分布。因此,HSF-2对体型相对较小、游泳能力较弱的鱼类向上游转移更为友好。新型HSF-2是本文首次提出的,它是在改善流态的过程中自然设计的。此外,借助于四种操作条件(即Q=400L/s、600L/s、800L/s和1000L/s)的数值结果,证明了HSF-2优于VSF和原始T形鱼道(即TSF-1)的可推广性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel H-shape fishway with excellent hydraulic characteristics
Abstract Fishway design not only takes into account the swimming abilities of target fishes, but also considers the hydrodynamic characteristics within the fishway. In this study, the flow fields of one vertical-slot fishway (i.e. VSF), five T-shape fishways (i.e. TSF-1~TSF-5) and two H-shape fishways (i.e. HSF-1 and HSF-2) are numerically simulated by solving the three-dimensional Reynolds-averaged Navier-Stokes equations and the K-Omega-SST turbulence model. The numerical results clearly indicate that the hydrodynamic properties of HSF-2 are overall superior to the remaining seven cases, in terms of the time-averaged flow pattern, the time-averaged velocity magnitude, the depth-mean time-averaged velocity magnitude along the vertical-slot section, the volume percentages of the time-averaged velocity magnitude less than some critical values, and the distribution of the time-averaged turbulent kinetic energy. Therefore, HSF-2 is more friendly for fishes with relatively smaller sizes and weaker swimming capacities to transfer upstream. The novel HSF-2 is firstly proposed in this paper, and it is naturally designed during the process of improving the flow regime. Furthermore, the generalizability of the superiority of HSF-2 over VSF and the original T-shape fishway (i.e. TSF-1) has been exhibited with the aid of the numerical results of four operating conditions (i.e. Q = 400 L/s, 600 L/s, 800 L/s and 1000 L/s).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
5.30%
发文量
30
审稿时长
>12 weeks
期刊介绍: JOURNAL OF HYDROLOGY AND HYDROMECHANICS is an international open access journal for the basic disciplines of water sciences. The scope of hydrology is limited to biohydrology, catchment hydrology and vadose zone hydrology, primarily of temperate zone. The hydromechanics covers theoretical, experimental and computational hydraulics and fluid mechanics in various fields, two- and multiphase flows, including non-Newtonian flow, and new frontiers in hydraulics. The journal is published quarterly in English. The types of contribution include: research and review articles, short communications and technical notes. The articles have been thoroughly peer reviewed by international specialists and promoted to researchers working in the same field.
期刊最新文献
Long-term field pH manipulation influence on microbial activity, water repellency and physical properties of soil Experimental and numerical investigation of water freezing and thawing in fully saturated sand Development of forest ecosystems on biota monitoring plots in the area of influence of Gabčíkovo Waterwork Optimal spur dike orientation for scour mitigation under downward seepage conditions Analysis of the unsaturated hydraulic properties of rocks using multiple laboratory methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1