J. Gálik, D. Varecha, M. Drbúl, R. Madaj, V. Konstantová
{"title":"小型通信设备和小物体移动消毒室的设计与优化","authors":"J. Gálik, D. Varecha, M. Drbúl, R. Madaj, V. Konstantová","doi":"10.30657/pea.2023.29.24","DOIUrl":null,"url":null,"abstract":"Abstract This manuscript aims to familiarise readers with the development of a device for the construction of a mobile disinfection chamber for small communication devices and small objects. The conceptual design and the material of the new device play essential roles in the design process of a new device. The manuscript presents concepts based primarily on previous experience and different perspectives. The concept design is created in the 3D modelling program CREO Parametric 8.0. A multi-criteria team evaluation determined the most suitable version of the idea. For dimensioning and shape adaptation of the device was used EinScan SP device (3D scanning method). The article's aim was also to establish a suitable way of producing a prototype using tribological research in available production methods and materials within rapid prototyping. Using the ALICONA Infinite Focus G5 device, experimentally investigated the parameters characterising the surface of the parts. The end of the manuscript focused on the mechanical structure and subjecting them to FEM analysis in the program ANSYS Workbench. The design of the concept disinfection device was also for extreme cases of use. Within this issue was optimising shapes, wall thicknesses, reinforcement design and other necessary modifications using the FEM analysis. From the results, the most suitable material to produce a more significant number of parts may not be the most suitable material to create prototype devices. Tools such as 3D scanning, rapid prototyping, and FEM analysis can \"significantly\" help reduce mistakes before testing the device.","PeriodicalId":36269,"journal":{"name":"Production Engineering Archives","volume":"29 1","pages":"201 - 215"},"PeriodicalIF":1.9000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and optimization of the construction of a mobile disinfection chamber for small communication devices and small objects\",\"authors\":\"J. Gálik, D. Varecha, M. Drbúl, R. Madaj, V. Konstantová\",\"doi\":\"10.30657/pea.2023.29.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This manuscript aims to familiarise readers with the development of a device for the construction of a mobile disinfection chamber for small communication devices and small objects. The conceptual design and the material of the new device play essential roles in the design process of a new device. The manuscript presents concepts based primarily on previous experience and different perspectives. The concept design is created in the 3D modelling program CREO Parametric 8.0. A multi-criteria team evaluation determined the most suitable version of the idea. For dimensioning and shape adaptation of the device was used EinScan SP device (3D scanning method). The article's aim was also to establish a suitable way of producing a prototype using tribological research in available production methods and materials within rapid prototyping. Using the ALICONA Infinite Focus G5 device, experimentally investigated the parameters characterising the surface of the parts. The end of the manuscript focused on the mechanical structure and subjecting them to FEM analysis in the program ANSYS Workbench. The design of the concept disinfection device was also for extreme cases of use. Within this issue was optimising shapes, wall thicknesses, reinforcement design and other necessary modifications using the FEM analysis. From the results, the most suitable material to produce a more significant number of parts may not be the most suitable material to create prototype devices. Tools such as 3D scanning, rapid prototyping, and FEM analysis can \\\"significantly\\\" help reduce mistakes before testing the device.\",\"PeriodicalId\":36269,\"journal\":{\"name\":\"Production Engineering Archives\",\"volume\":\"29 1\",\"pages\":\"201 - 215\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Production Engineering Archives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30657/pea.2023.29.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Production Engineering Archives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30657/pea.2023.29.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Design and optimization of the construction of a mobile disinfection chamber for small communication devices and small objects
Abstract This manuscript aims to familiarise readers with the development of a device for the construction of a mobile disinfection chamber for small communication devices and small objects. The conceptual design and the material of the new device play essential roles in the design process of a new device. The manuscript presents concepts based primarily on previous experience and different perspectives. The concept design is created in the 3D modelling program CREO Parametric 8.0. A multi-criteria team evaluation determined the most suitable version of the idea. For dimensioning and shape adaptation of the device was used EinScan SP device (3D scanning method). The article's aim was also to establish a suitable way of producing a prototype using tribological research in available production methods and materials within rapid prototyping. Using the ALICONA Infinite Focus G5 device, experimentally investigated the parameters characterising the surface of the parts. The end of the manuscript focused on the mechanical structure and subjecting them to FEM analysis in the program ANSYS Workbench. The design of the concept disinfection device was also for extreme cases of use. Within this issue was optimising shapes, wall thicknesses, reinforcement design and other necessary modifications using the FEM analysis. From the results, the most suitable material to produce a more significant number of parts may not be the most suitable material to create prototype devices. Tools such as 3D scanning, rapid prototyping, and FEM analysis can "significantly" help reduce mistakes before testing the device.