数据驱动工业软测量中基于互信息的混合方法变量选择算法

Jorge E. Cote-Ballesteros, Victor Hugo Grisales Palacios, Jhon Edisson Rodriguez-Castellanos
{"title":"数据驱动工业软测量中基于互信息的混合方法变量选择算法","authors":"Jorge E. Cote-Ballesteros, Victor Hugo Grisales Palacios, Jhon Edisson Rodriguez-Castellanos","doi":"10.18359/rcin.5644","DOIUrl":null,"url":null,"abstract":"\n \n \n \nThe development of virtual sensors predicting the desired output requires a careful selection of input variables for model construction. In an industrial environment, datasets contain many instrumentation system measures; however, these variables are often non-relevant or excessive information. This paper proposes a variable selection algorithm based on mutual information examination, redundancy analysis, and variable reduction for soft-sensor modeling. A relevance calculation is performed in the first stage to select important variables using the mutual information criterion. Then, the detection and exclusion of redundant variables are carried out, penalizing undesired variables. Finally, the most relevant variables subset is determined through a wrapper method using Mallowssans' Cp metric to assess the fitting prediction performance. The approach was successfully applied to estimate the ethanol concentration for a distillation column process using an adaptive network-based fuzzy inference system architecture as a non-linear dynamic regression model. A comparative study was performed considering the application of correlation analysis and the method proposed in this study. Simulation results show the effectiveness of the proposed approach in the variable selection providing a reduction in search of suitable models that achieve faster results for developing soft sensors oriented to industrial applications. \n \n \n \n","PeriodicalId":31201,"journal":{"name":"Ciencia e Ingenieria Neogranadina","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Hybrid Approach Variable Selection Algorithm Based on Mutual Information for Data-Driven Industrial Soft-Sensor Applications\",\"authors\":\"Jorge E. Cote-Ballesteros, Victor Hugo Grisales Palacios, Jhon Edisson Rodriguez-Castellanos\",\"doi\":\"10.18359/rcin.5644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\n \\nThe development of virtual sensors predicting the desired output requires a careful selection of input variables for model construction. In an industrial environment, datasets contain many instrumentation system measures; however, these variables are often non-relevant or excessive information. This paper proposes a variable selection algorithm based on mutual information examination, redundancy analysis, and variable reduction for soft-sensor modeling. A relevance calculation is performed in the first stage to select important variables using the mutual information criterion. Then, the detection and exclusion of redundant variables are carried out, penalizing undesired variables. Finally, the most relevant variables subset is determined through a wrapper method using Mallowssans' Cp metric to assess the fitting prediction performance. The approach was successfully applied to estimate the ethanol concentration for a distillation column process using an adaptive network-based fuzzy inference system architecture as a non-linear dynamic regression model. A comparative study was performed considering the application of correlation analysis and the method proposed in this study. Simulation results show the effectiveness of the proposed approach in the variable selection providing a reduction in search of suitable models that achieve faster results for developing soft sensors oriented to industrial applications. \\n \\n \\n \\n\",\"PeriodicalId\":31201,\"journal\":{\"name\":\"Ciencia e Ingenieria Neogranadina\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ciencia e Ingenieria Neogranadina\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18359/rcin.5644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencia e Ingenieria Neogranadina","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18359/rcin.5644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

开发预测期望输出的虚拟传感器需要仔细选择模型构建的输入变量。在工业环境中,数据集包含许多仪器系统测量;然而,这些变量往往是不相关的或过多的信息。提出了一种基于互信息检验、冗余分析和变量约简的软测量建模变量选择算法。在第一阶段进行相关性计算,利用互信息准则选择重要变量。然后,进行冗余变量的检测和排除,惩罚不需要的变量。最后,通过使用malallowssans的Cp度量来评估拟合预测性能的包装方法确定最相关的变量子集。该方法采用自适应网络模糊推理系统结构作为非线性动态回归模型,成功地应用于精馏塔过程中乙醇浓度的估计。结合相关分析的应用和本文提出的方法进行了对比研究。仿真结果表明了该方法在变量选择方面的有效性,减少了对合适模型的搜索,为开发面向工业应用的软传感器提供了更快的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Approach Variable Selection Algorithm Based on Mutual Information for Data-Driven Industrial Soft-Sensor Applications
The development of virtual sensors predicting the desired output requires a careful selection of input variables for model construction. In an industrial environment, datasets contain many instrumentation system measures; however, these variables are often non-relevant or excessive information. This paper proposes a variable selection algorithm based on mutual information examination, redundancy analysis, and variable reduction for soft-sensor modeling. A relevance calculation is performed in the first stage to select important variables using the mutual information criterion. Then, the detection and exclusion of redundant variables are carried out, penalizing undesired variables. Finally, the most relevant variables subset is determined through a wrapper method using Mallowssans' Cp metric to assess the fitting prediction performance. The approach was successfully applied to estimate the ethanol concentration for a distillation column process using an adaptive network-based fuzzy inference system architecture as a non-linear dynamic regression model. A comparative study was performed considering the application of correlation analysis and the method proposed in this study. Simulation results show the effectiveness of the proposed approach in the variable selection providing a reduction in search of suitable models that achieve faster results for developing soft sensors oriented to industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
9
审稿时长
20 weeks
期刊最新文献
Editorial Exploración del efecto de la integración de herramientas con agentividad en ambientes de aprendizaje Performance of a Series of Polishing Ponds in the Treatment of Sanitary Sewage Sistemas de detección y prevención de intrusos Análisis de la huella hídrica azul como indicador de sostenibilidad en pymes del Valle del Cauca
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1