Yujiro Ikeda, M. Teshigawara, M. Yan, C. Iwamoto, Kunihiro Fujita, Yutaka Abe, Y. Wakabayashi, A. Taketani, Takaoki Takanashi, M. Harada, T. Hashiguchi, Yutaka Yamagata, Yoshio Matsuzaki, B. Ma, M. Takamura, M. Mizuta, Makoto Goto, S. Ikeda, Tomohiro Kobayashi, Y. Otake
{"title":"RANS安装均三甲苯慢化剂对冷中子源性能的实验验证","authors":"Yujiro Ikeda, M. Teshigawara, M. Yan, C. Iwamoto, Kunihiro Fujita, Yutaka Abe, Y. Wakabayashi, A. Taketani, Takaoki Takanashi, M. Harada, T. Hashiguchi, Yutaka Yamagata, Yoshio Matsuzaki, B. Ma, M. Takamura, M. Mizuta, Makoto Goto, S. Ikeda, Tomohiro Kobayashi, Y. Otake","doi":"10.3233/jnr-220034","DOIUrl":null,"url":null,"abstract":"The RANS (RIKEN Accelerator driven Neutron Source), one of compact accelerator neutron sources (CANS), tries to expand its performance by installing a cold neutron which may provide new opportunities in many applications. RANS is a low power CANS with a proton beam of 7 MeV and 100 µA at maximum. A moderator system was constructed based on results of optimization design study with mesitylene. Recently, we have done performance tests aiming at showing characteristics as cold neutron source. Cryogenic mesitylene moderator was installed on a plug with a new target moderator reflector configuration of RANS. Experiment using a gas electron multiplier (GEM) detector was carried out to measure neutron spectra of the cold moderator. This paper describes performance of the cold moderator in terms of 1) Cold neutron gain of optimization design with respect to a polyethylene moderator, 2) Temperature dependency of cold neutron spectrum flux regarding scattering kernel (SK), and 3) comparison between experiment and calculation. A note is given for comparison between calculations with different SKs available. Also, two-dimensional imaging of cold and thermal neutron spectrum flux on the viewed surface is shown with a pinhole slit configuration.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Experimental validation of cold neutron source performance with mesitylene moderator installed at RANS\",\"authors\":\"Yujiro Ikeda, M. Teshigawara, M. Yan, C. Iwamoto, Kunihiro Fujita, Yutaka Abe, Y. Wakabayashi, A. Taketani, Takaoki Takanashi, M. Harada, T. Hashiguchi, Yutaka Yamagata, Yoshio Matsuzaki, B. Ma, M. Takamura, M. Mizuta, Makoto Goto, S. Ikeda, Tomohiro Kobayashi, Y. Otake\",\"doi\":\"10.3233/jnr-220034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The RANS (RIKEN Accelerator driven Neutron Source), one of compact accelerator neutron sources (CANS), tries to expand its performance by installing a cold neutron which may provide new opportunities in many applications. RANS is a low power CANS with a proton beam of 7 MeV and 100 µA at maximum. A moderator system was constructed based on results of optimization design study with mesitylene. Recently, we have done performance tests aiming at showing characteristics as cold neutron source. Cryogenic mesitylene moderator was installed on a plug with a new target moderator reflector configuration of RANS. Experiment using a gas electron multiplier (GEM) detector was carried out to measure neutron spectra of the cold moderator. This paper describes performance of the cold moderator in terms of 1) Cold neutron gain of optimization design with respect to a polyethylene moderator, 2) Temperature dependency of cold neutron spectrum flux regarding scattering kernel (SK), and 3) comparison between experiment and calculation. A note is given for comparison between calculations with different SKs available. Also, two-dimensional imaging of cold and thermal neutron spectrum flux on the viewed surface is shown with a pinhole slit configuration.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jnr-220034\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jnr-220034","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental validation of cold neutron source performance with mesitylene moderator installed at RANS
The RANS (RIKEN Accelerator driven Neutron Source), one of compact accelerator neutron sources (CANS), tries to expand its performance by installing a cold neutron which may provide new opportunities in many applications. RANS is a low power CANS with a proton beam of 7 MeV and 100 µA at maximum. A moderator system was constructed based on results of optimization design study with mesitylene. Recently, we have done performance tests aiming at showing characteristics as cold neutron source. Cryogenic mesitylene moderator was installed on a plug with a new target moderator reflector configuration of RANS. Experiment using a gas electron multiplier (GEM) detector was carried out to measure neutron spectra of the cold moderator. This paper describes performance of the cold moderator in terms of 1) Cold neutron gain of optimization design with respect to a polyethylene moderator, 2) Temperature dependency of cold neutron spectrum flux regarding scattering kernel (SK), and 3) comparison between experiment and calculation. A note is given for comparison between calculations with different SKs available. Also, two-dimensional imaging of cold and thermal neutron spectrum flux on the viewed surface is shown with a pinhole slit configuration.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.