采用激光粉末床熔合法制备了新型非等原子TiZrHfNbTaMo生物高熵合金

IF 8.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Letters Pub Date : 2022-11-29 DOI:10.1080/21663831.2022.2147406
O. Gokcekaya, Takuya Ishimoto, Yuki Nishikawa, Yong Seong Kim, Aira Matsugaki, Ryosuke Ozasa, M. Weinmann, C. Schnitter, M. Stenzel, Hyoung-Seop Kim, Y. Miyabayashi, T. Nakano
{"title":"采用激光粉末床熔合法制备了新型非等原子TiZrHfNbTaMo生物高熵合金","authors":"O. Gokcekaya, Takuya Ishimoto, Yuki Nishikawa, Yong Seong Kim, Aira Matsugaki, Ryosuke Ozasa, M. Weinmann, C. Schnitter, M. Stenzel, Hyoung-Seop Kim, Y. Miyabayashi, T. Nakano","doi":"10.1080/21663831.2022.2147406","DOIUrl":null,"url":null,"abstract":"This study developed a non-equiatomic Ti28.33Zr28.33Hf28.33Nb6.74Ta6.74Mo1.55 super-solid solutionized BioHEA using laser powder bed fusion (LPBF) to reach the full potential as BioHEA. We succeeded in significant suppression of elemental segregation, thus, resulting in a single crystalline-like texture by activating layer-to-layer epitaxial growth. Relatively low Young’s modulus was achieved in the single crystalline-like BioHEA. Moreover, LPBF-fabricated BioHEA exhibited significantly higher yield stress (1355–1426 MPa) due to the effective solid solution hardening compared to as-cast counterpart with marked segregation (949 MPa), and good biocompatibility. This is first report achieving BioHEA with low modulus, excellent strength-ductility balance, and good biocompatibility via LPBF. GRAPHICAL ABSTRACT IMPACT STATEMENT This study achieved super-solid-solutionized and single crystalline-like TiZrHfNbTaMo bio-high entropy alloy using laser powder bed fusion, resulting in low Young’s modulus along <001> oriented direction, excellent strength-ductility balance, and good cytocompatibility.","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"11 1","pages":"274 - 280"},"PeriodicalIF":8.6000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Novel single crystalline-like non-equiatomic TiZrHfNbTaMo bio-high entropy alloy (BioHEA) developed by laser powder bed fusion\",\"authors\":\"O. Gokcekaya, Takuya Ishimoto, Yuki Nishikawa, Yong Seong Kim, Aira Matsugaki, Ryosuke Ozasa, M. Weinmann, C. Schnitter, M. Stenzel, Hyoung-Seop Kim, Y. Miyabayashi, T. Nakano\",\"doi\":\"10.1080/21663831.2022.2147406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study developed a non-equiatomic Ti28.33Zr28.33Hf28.33Nb6.74Ta6.74Mo1.55 super-solid solutionized BioHEA using laser powder bed fusion (LPBF) to reach the full potential as BioHEA. We succeeded in significant suppression of elemental segregation, thus, resulting in a single crystalline-like texture by activating layer-to-layer epitaxial growth. Relatively low Young’s modulus was achieved in the single crystalline-like BioHEA. Moreover, LPBF-fabricated BioHEA exhibited significantly higher yield stress (1355–1426 MPa) due to the effective solid solution hardening compared to as-cast counterpart with marked segregation (949 MPa), and good biocompatibility. This is first report achieving BioHEA with low modulus, excellent strength-ductility balance, and good biocompatibility via LPBF. GRAPHICAL ABSTRACT IMPACT STATEMENT This study achieved super-solid-solutionized and single crystalline-like TiZrHfNbTaMo bio-high entropy alloy using laser powder bed fusion, resulting in low Young’s modulus along <001> oriented direction, excellent strength-ductility balance, and good cytocompatibility.\",\"PeriodicalId\":18291,\"journal\":{\"name\":\"Materials Research Letters\",\"volume\":\"11 1\",\"pages\":\"274 - 280\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/21663831.2022.2147406\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21663831.2022.2147406","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

本研究利用激光粉末床融合(LPBF)开发了一种非等原子Ti28.33Zr28.33Hf28.33Nb6.74Ta6.74Mo1.55超固态固溶体BioHEA,以充分发挥其作为BioHEA的潜力。我们成功地显著抑制了元素偏析,从而通过激活逐层外延生长产生了类似单晶的织构。在类似BioHEA的单晶中实现了相对低的杨氏模量。此外,LPBF制造的BioHEA表现出显著更高的屈服应力(1355–1426 MPa),这是由于与具有明显偏析(949 MPa)和良好的生物相容性。这是首次报道通过LPBF实现具有低模量、优异的强度-延展性平衡和良好生物相容性的BioHEA。图形摘要影响声明本研究使用激光粉末床融合实现了超固态固溶和单晶状TiZrHfNbTaMo生物高熵合金,使其在定向方向上具有低杨氏模量、优异的强度-延展性平衡和良好的细胞相容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel single crystalline-like non-equiatomic TiZrHfNbTaMo bio-high entropy alloy (BioHEA) developed by laser powder bed fusion
This study developed a non-equiatomic Ti28.33Zr28.33Hf28.33Nb6.74Ta6.74Mo1.55 super-solid solutionized BioHEA using laser powder bed fusion (LPBF) to reach the full potential as BioHEA. We succeeded in significant suppression of elemental segregation, thus, resulting in a single crystalline-like texture by activating layer-to-layer epitaxial growth. Relatively low Young’s modulus was achieved in the single crystalline-like BioHEA. Moreover, LPBF-fabricated BioHEA exhibited significantly higher yield stress (1355–1426 MPa) due to the effective solid solution hardening compared to as-cast counterpart with marked segregation (949 MPa), and good biocompatibility. This is first report achieving BioHEA with low modulus, excellent strength-ductility balance, and good biocompatibility via LPBF. GRAPHICAL ABSTRACT IMPACT STATEMENT This study achieved super-solid-solutionized and single crystalline-like TiZrHfNbTaMo bio-high entropy alloy using laser powder bed fusion, resulting in low Young’s modulus along <001> oriented direction, excellent strength-ductility balance, and good cytocompatibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Letters
Materials Research Letters Materials Science-General Materials Science
CiteScore
12.10
自引率
3.60%
发文量
98
审稿时长
3.3 months
期刊介绍: Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.
期刊最新文献
Microstructural evolution and toughening mechanism of WC-Co composite prepared by amorphous-crystallization method Eliminate the contradiction between temperature and toughness by grain-boundary delamination in heterogeneous ultrafine-grained lamellar steels The activation of multiple slip systems in polycrystalline zirconium by using automated lattice rotation framework A novel atomic mechanism of fcc → hcp → bcc phase transition in a gradient nanostructured compositionally complex alloy Unraveling the origin of ductility in multilayered Ti/Nb composites: role of dislocation evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1