G. Banyay, Clarence Worrell, S. E. Sidener, Joshua S. Kaizer
{"title":"机器学习在制造过程应用中的可信度评估","authors":"G. Banyay, Clarence Worrell, S. E. Sidener, Joshua S. Kaizer","doi":"10.1115/1.4051717","DOIUrl":null,"url":null,"abstract":"\n We present a framework for establishing credibility of a machine learning (ML) model used to predict a key process control variable setting to maximize product quality in a component manufacturing application. Our model coupled a purely data-based ML model with a physics-based adjustment that encoded subject matter expertise of the physical process. Establishing credibility of the resulting model provided the basis for eliminating a costly intermediate testing process that was previously used to determine the control variable setting.","PeriodicalId":52254,"journal":{"name":"Journal of Verification, Validation and Uncertainty Quantification","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Credibility Assessment of Machine Learning in a Manufacturing Process Application\",\"authors\":\"G. Banyay, Clarence Worrell, S. E. Sidener, Joshua S. Kaizer\",\"doi\":\"10.1115/1.4051717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We present a framework for establishing credibility of a machine learning (ML) model used to predict a key process control variable setting to maximize product quality in a component manufacturing application. Our model coupled a purely data-based ML model with a physics-based adjustment that encoded subject matter expertise of the physical process. Establishing credibility of the resulting model provided the basis for eliminating a costly intermediate testing process that was previously used to determine the control variable setting.\",\"PeriodicalId\":52254,\"journal\":{\"name\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Verification, Validation and Uncertainty Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4051717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Verification, Validation and Uncertainty Quantification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4051717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Credibility Assessment of Machine Learning in a Manufacturing Process Application
We present a framework for establishing credibility of a machine learning (ML) model used to predict a key process control variable setting to maximize product quality in a component manufacturing application. Our model coupled a purely data-based ML model with a physics-based adjustment that encoded subject matter expertise of the physical process. Establishing credibility of the resulting model provided the basis for eliminating a costly intermediate testing process that was previously used to determine the control variable setting.