H. Duminil-Copin, Subhajit Goswami, Pierre-François Rodriguez, Franco Severo
{"title":"高斯自由场水平集渗流临界参数的相等性","authors":"H. Duminil-Copin, Subhajit Goswami, Pierre-François Rodriguez, Franco Severo","doi":"10.1215/00127094-2022-0017","DOIUrl":null,"url":null,"abstract":"We consider level-sets of the Gaussian free field on $\\mathbb Z^d$, for $d\\geq 3$, above a given real-valued height parameter $h$. As $h$ varies, this defines a canonical percolation model with strong, algebraically decaying correlations. We prove that three natural critical parameters associated to this model, namely $h_{**}(d)$, $h_{*}(d)$ and $\\bar h(d)$, respectively describing a well-ordered subcritical phase, the emergence of an infinite cluster, and the onset of a local uniqueness regime in the supercritical phase, actually coincide, i.e. $h_{**}(d)=h_{*}(d)= \\bar h(d)$ for any $d \\geq 3$. At the core of our proof lies a new interpolation scheme aimed at integrating out the long-range dependence of the Gaussian free field. The successful implementation of this strategy relies extensively on certain novel renormalization techniques, in particular to control so-called large-field effects. This approach opens the way to a complete understanding of the off-critical phases of strongly correlated percolation models.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Equality of critical parameters for percolation of Gaussian free field level sets\",\"authors\":\"H. Duminil-Copin, Subhajit Goswami, Pierre-François Rodriguez, Franco Severo\",\"doi\":\"10.1215/00127094-2022-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider level-sets of the Gaussian free field on $\\\\mathbb Z^d$, for $d\\\\geq 3$, above a given real-valued height parameter $h$. As $h$ varies, this defines a canonical percolation model with strong, algebraically decaying correlations. We prove that three natural critical parameters associated to this model, namely $h_{**}(d)$, $h_{*}(d)$ and $\\\\bar h(d)$, respectively describing a well-ordered subcritical phase, the emergence of an infinite cluster, and the onset of a local uniqueness regime in the supercritical phase, actually coincide, i.e. $h_{**}(d)=h_{*}(d)= \\\\bar h(d)$ for any $d \\\\geq 3$. At the core of our proof lies a new interpolation scheme aimed at integrating out the long-range dependence of the Gaussian free field. The successful implementation of this strategy relies extensively on certain novel renormalization techniques, in particular to control so-called large-field effects. This approach opens the way to a complete understanding of the off-critical phases of strongly correlated percolation models.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0017\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0017","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Equality of critical parameters for percolation of Gaussian free field level sets
We consider level-sets of the Gaussian free field on $\mathbb Z^d$, for $d\geq 3$, above a given real-valued height parameter $h$. As $h$ varies, this defines a canonical percolation model with strong, algebraically decaying correlations. We prove that three natural critical parameters associated to this model, namely $h_{**}(d)$, $h_{*}(d)$ and $\bar h(d)$, respectively describing a well-ordered subcritical phase, the emergence of an infinite cluster, and the onset of a local uniqueness regime in the supercritical phase, actually coincide, i.e. $h_{**}(d)=h_{*}(d)= \bar h(d)$ for any $d \geq 3$. At the core of our proof lies a new interpolation scheme aimed at integrating out the long-range dependence of the Gaussian free field. The successful implementation of this strategy relies extensively on certain novel renormalization techniques, in particular to control so-called large-field effects. This approach opens the way to a complete understanding of the off-critical phases of strongly correlated percolation models.