用于压电能量采集系统的自供电VDJT交流-直流转换电路

Q2 Engineering Designs Pub Date : 2023-07-20 DOI:10.3390/designs7040094
Muhammad Kamran, Mahesh Edla, A. Thabet, Mustafa Ucgul, Deguchi Mikio, V. Bui
{"title":"用于压电能量采集系统的自供电VDJT交流-直流转换电路","authors":"Muhammad Kamran, Mahesh Edla, A. Thabet, Mustafa Ucgul, Deguchi Mikio, V. Bui","doi":"10.3390/designs7040094","DOIUrl":null,"url":null,"abstract":"A comprehensive model for micro-powered piezoelectric generator (PG), analysis of operation, and control of voltage doubler joule thief (VDJT) circuit to find the piezoelectric devices (PD’s) optimum functioning points are discussed in the present article. The proposed model demonstrates the power dependence of the PG on mechanical excitation, frequency, and acceleration, as well as outlines the load behaviour for optimal operation. The proposed VDJT circuit integrates the combination of voltage doubler (VD) and joule thief circuit, whereas the VD circuit works in Stage 1 for AC (alternating current)–DC (direct current) conversion, while a joule thief circuit works in Stage 2 for DC–DC conversion. The proposed circuit functions as an efficient power converter, which converts power from AC–DC and boosts the voltage from low to high without employing any additional electronic components and generating duty cycles. The electrical nature of the input (i.e., PD) of a VDJT circuit is in perfect arrangement with the investigated optimisation needs when using the proposed control circuit. The effectiveness of the proposed VDJT circuit is examined in terms of both simulation and experiment, and the results are presented. The proposed circuit’s performance was validated with available results of power electronics interfaces in the literature. The proposed circuit’s flexibility and controllability can be used for various applications, including mobile battery charging and power harvesting.","PeriodicalId":53150,"journal":{"name":"Designs","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Self-Powered VDJT AC–DC Conversion Circuit for Piezoelectric Energy Harvesting Systems\",\"authors\":\"Muhammad Kamran, Mahesh Edla, A. Thabet, Mustafa Ucgul, Deguchi Mikio, V. Bui\",\"doi\":\"10.3390/designs7040094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A comprehensive model for micro-powered piezoelectric generator (PG), analysis of operation, and control of voltage doubler joule thief (VDJT) circuit to find the piezoelectric devices (PD’s) optimum functioning points are discussed in the present article. The proposed model demonstrates the power dependence of the PG on mechanical excitation, frequency, and acceleration, as well as outlines the load behaviour for optimal operation. The proposed VDJT circuit integrates the combination of voltage doubler (VD) and joule thief circuit, whereas the VD circuit works in Stage 1 for AC (alternating current)–DC (direct current) conversion, while a joule thief circuit works in Stage 2 for DC–DC conversion. The proposed circuit functions as an efficient power converter, which converts power from AC–DC and boosts the voltage from low to high without employing any additional electronic components and generating duty cycles. The electrical nature of the input (i.e., PD) of a VDJT circuit is in perfect arrangement with the investigated optimisation needs when using the proposed control circuit. The effectiveness of the proposed VDJT circuit is examined in terms of both simulation and experiment, and the results are presented. The proposed circuit’s performance was validated with available results of power electronics interfaces in the literature. The proposed circuit’s flexibility and controllability can be used for various applications, including mobile battery charging and power harvesting.\",\"PeriodicalId\":53150,\"journal\":{\"name\":\"Designs\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs\",\"FirstCategoryId\":\"1094\",\"ListUrlMain\":\"https://doi.org/10.3390/designs7040094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs","FirstCategoryId":"1094","ListUrlMain":"https://doi.org/10.3390/designs7040094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了微型压电发电机的综合模型、运行分析以及对倍压焦耳小偷电路的控制,以寻找压电器件的最佳功能点。所提出的模型展示了PG对机械激励、频率和加速度的功率依赖性,并概述了最佳运行的负载行为。提出的VDJT电路集成了倍压器(VD)和焦耳盗窃电路的组合,而VD电路在第1阶段工作用于AC(交流)-DC(直流)转换,而焦耳盗窃电路在第2阶段工作用于DC-DC转换。所提出的电路功能作为一个有效的电源转换器,它转换电源从AC-DC和提高电压从低到高,而不使用任何额外的电子元件和产生占空比。当使用建议的控制电路时,VDJT电路的输入(即PD)的电气性质与所研究的优化需求完美地安排在一起。从仿真和实验两方面验证了所提VDJT电路的有效性,并给出了结果。利用文献中已有的电力电子接口结果验证了所提电路的性能。所提出的电路的灵活性和可控性可用于各种应用,包括移动电池充电和电力收集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Self-Powered VDJT AC–DC Conversion Circuit for Piezoelectric Energy Harvesting Systems
A comprehensive model for micro-powered piezoelectric generator (PG), analysis of operation, and control of voltage doubler joule thief (VDJT) circuit to find the piezoelectric devices (PD’s) optimum functioning points are discussed in the present article. The proposed model demonstrates the power dependence of the PG on mechanical excitation, frequency, and acceleration, as well as outlines the load behaviour for optimal operation. The proposed VDJT circuit integrates the combination of voltage doubler (VD) and joule thief circuit, whereas the VD circuit works in Stage 1 for AC (alternating current)–DC (direct current) conversion, while a joule thief circuit works in Stage 2 for DC–DC conversion. The proposed circuit functions as an efficient power converter, which converts power from AC–DC and boosts the voltage from low to high without employing any additional electronic components and generating duty cycles. The electrical nature of the input (i.e., PD) of a VDJT circuit is in perfect arrangement with the investigated optimisation needs when using the proposed control circuit. The effectiveness of the proposed VDJT circuit is examined in terms of both simulation and experiment, and the results are presented. The proposed circuit’s performance was validated with available results of power electronics interfaces in the literature. The proposed circuit’s flexibility and controllability can be used for various applications, including mobile battery charging and power harvesting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designs
Designs Engineering-Engineering (miscellaneous)
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Mechanical Transmissions with Convex–Concave Multipair Contact of Teeth in Precessional Gearing Design and Operational Assessment of a Railroad Track Robot for Railcar Undercarriage Condition Inspection Computational Investigation of the Fluidic Properties of Triply Periodic Minimal Surface (TPMS) Structures in Tissue Engineering Designs of Miniature Optomechanical Sensors for Measurements of Acceleration with Frequencies of Hundreds of Hertz Mapping the Potential of Zero-Energy Building in Greece Using Roof Photovoltaics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1