A. E. Sytschev, M. L. Busurina, O. D. Boyarchenko, S. G. Vadchenko
{"title":"自传播高温合成在Ti-Al和Ni-Al体系中的焊接","authors":"A. E. Sytschev, M. L. Busurina, O. D. Boyarchenko, S. G. Vadchenko","doi":"10.3103/S1061386223010077","DOIUrl":null,"url":null,"abstract":"<p>The possibility of welding between Ti–Al and Ni–Al layers via self-propagating high-temperature synthesis was demonstrated by using the heat released from the exothermic chemical reaction. The applied pressure and the presence of reactive intermediate layers (Cu, Al) are the most important requirements for strong welding. In the TiAl/NiAl system, there is a temperature gradient, and the main heat transfer occurs toward the Ti–Al layer, resulting in increased Ni diffusion. The increased mobility of Ni atoms is due to their smaller atomic radius as compared to Ti. The proposed technique seems attractive for repair operations and deposition of coatings in special-purpose applications.</p>","PeriodicalId":595,"journal":{"name":"International Journal of Self-Propagating High-Temperature Synthesis","volume":"32 1","pages":"36 - 40"},"PeriodicalIF":0.5000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Welding in Ti–Al and Ni–Al Systems by Self-Propagating High-Temperature Synthesis\",\"authors\":\"A. E. Sytschev, M. L. Busurina, O. D. Boyarchenko, S. G. Vadchenko\",\"doi\":\"10.3103/S1061386223010077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The possibility of welding between Ti–Al and Ni–Al layers via self-propagating high-temperature synthesis was demonstrated by using the heat released from the exothermic chemical reaction. The applied pressure and the presence of reactive intermediate layers (Cu, Al) are the most important requirements for strong welding. In the TiAl/NiAl system, there is a temperature gradient, and the main heat transfer occurs toward the Ti–Al layer, resulting in increased Ni diffusion. The increased mobility of Ni atoms is due to their smaller atomic radius as compared to Ti. The proposed technique seems attractive for repair operations and deposition of coatings in special-purpose applications.</p>\",\"PeriodicalId\":595,\"journal\":{\"name\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"volume\":\"32 1\",\"pages\":\"36 - 40\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Self-Propagating High-Temperature Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S1061386223010077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Self-Propagating High-Temperature Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1061386223010077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Welding in Ti–Al and Ni–Al Systems by Self-Propagating High-Temperature Synthesis
The possibility of welding between Ti–Al and Ni–Al layers via self-propagating high-temperature synthesis was demonstrated by using the heat released from the exothermic chemical reaction. The applied pressure and the presence of reactive intermediate layers (Cu, Al) are the most important requirements for strong welding. In the TiAl/NiAl system, there is a temperature gradient, and the main heat transfer occurs toward the Ti–Al layer, resulting in increased Ni diffusion. The increased mobility of Ni atoms is due to their smaller atomic radius as compared to Ti. The proposed technique seems attractive for repair operations and deposition of coatings in special-purpose applications.
期刊介绍:
International Journal of Self-Propagating High-Temperature Synthesis is an international journal covering a wide range of topics concerned with self-propagating high-temperature synthesis (SHS), the process for the production of advanced materials based on solid-state combustion utilizing internally generated chemical energy. Subjects range from the fundamentals of SHS processes, chemistry and technology of SHS products and advanced materials to problems concerned with related fields, such as the kinetics and thermodynamics of high-temperature chemical reactions, combustion theory, macroscopic kinetics of nonisothermic processes, etc. The journal is intended to provide a wide-ranging exchange of research results and a better understanding of developmental and innovative trends in SHS science and applications.