投资者行为的算法模型

A. Lo, Alexander Remerov
{"title":"投资者行为的算法模型","authors":"A. Lo, Alexander Remerov","doi":"10.52354/JSI.1.1.II","DOIUrl":null,"url":null,"abstract":"We propose a heuristic approach to modeling investor behavior by simulating combinations of simpler systematic investment strategies associated with well-known behavioral biases—in functional forms motivated by an extensive review of the behavioral finance literature—using parameters calibrated from historical data. We compute the investment performance of these heuristics individually and in pairwise combinations using both simulated and historical asset-class returns. The mean-reversion or momentum nature of a heuristic can often explain its effect on performance, depending on whether asset returns are consistent with such dynamics. These algorithms show that seemingly irrational investor behavior may, in fact, have been shaped by evolutionary forces and can be effective in certain environments and maladaptive in others.","PeriodicalId":30123,"journal":{"name":"Journal of Systems Integration","volume":"1 1","pages":"1-29"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Algorithmic Models of Investor Behavior\",\"authors\":\"A. Lo, Alexander Remerov\",\"doi\":\"10.52354/JSI.1.1.II\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a heuristic approach to modeling investor behavior by simulating combinations of simpler systematic investment strategies associated with well-known behavioral biases—in functional forms motivated by an extensive review of the behavioral finance literature—using parameters calibrated from historical data. We compute the investment performance of these heuristics individually and in pairwise combinations using both simulated and historical asset-class returns. The mean-reversion or momentum nature of a heuristic can often explain its effect on performance, depending on whether asset returns are consistent with such dynamics. These algorithms show that seemingly irrational investor behavior may, in fact, have been shaped by evolutionary forces and can be effective in certain environments and maladaptive in others.\",\"PeriodicalId\":30123,\"journal\":{\"name\":\"Journal of Systems Integration\",\"volume\":\"1 1\",\"pages\":\"1-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52354/JSI.1.1.II\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52354/JSI.1.1.II","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种启发式方法,通过模拟与众所周知的行为偏差相关的简单系统投资策略的组合,使用从历史数据校准的参数,通过对行为金融学文献的广泛回顾,以功能形式激发。我们使用模拟和历史资产类别回报分别计算这些启发式的投资绩效和两两组合。启发式的均值回归或动量性质通常可以解释其对业绩的影响,这取决于资产回报是否与这种动态一致。这些算法表明,看似非理性的投资者行为实际上可能是由进化力量塑造的,在某些环境中可能有效,而在其他环境中则可能不适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Algorithmic Models of Investor Behavior
We propose a heuristic approach to modeling investor behavior by simulating combinations of simpler systematic investment strategies associated with well-known behavioral biases—in functional forms motivated by an extensive review of the behavioral finance literature—using parameters calibrated from historical data. We compute the investment performance of these heuristics individually and in pairwise combinations using both simulated and historical asset-class returns. The mean-reversion or momentum nature of a heuristic can often explain its effect on performance, depending on whether asset returns are consistent with such dynamics. These algorithms show that seemingly irrational investor behavior may, in fact, have been shaped by evolutionary forces and can be effective in certain environments and maladaptive in others.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Strategi Bertahan Hidup Petani (Studi pada Keluarga Petani Karet di Desa Jeriji pada Masa Pandemi Covid-19) Strategi Pengembangan Pembangunan Aek Biru Sebagai Destinasi Wisata Desa Cit, Kecamatan Riausilip, Kabupaten Bangka, Kepulauan Bangka Belitung Dampak Sosial Ekonomi Kampoeng Reklamasi PT Timah Dalam Menunjang Pengembangan Sektor Pariwisata Di Desa Riding Panjang Kabupaten Bangka Analisis Fenomena Tren Green Lifestyle Pada Mahasiswa Universitas Bangka Belitung Peningkatan Kualitas Layanan Publik Dengan Inovasi Peta
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1