主成分回归在异常自动抄表系统电能消耗估算中的新应用

Kantikoon Visavat, Kinnares Vijit
{"title":"主成分回归在异常自动抄表系统电能消耗估算中的新应用","authors":"Kantikoon Visavat, Kinnares Vijit","doi":"10.5897/SRE2018.6564","DOIUrl":null,"url":null,"abstract":"This paper proposes a new application of principal component regression (PCR) for estimating electrical energy consumption in case of abnormal automatic meter reading (AMR) systems. These events occur in a delivery metering system such as problems from mistakenly setting and connecting meters in electrical systems, broken metering accessories, etc. The estimation is performed by using MATLAB. The unclean sampled input data is used to estimate the target output data. The mean absolute percentage error (MAPE) is used as estimation performance. In this proposed estimation, load profiles obtained from the AMR are used as input data for training to create estimation model and for testing to validate model. Estimated results are verified by comparison between the proposed PCR application and other applications such as simple linear regression (SLR), multiple linear regression (MLR). The proposed PCR gives the best error results of MAPE for the lost electrical energy estimation.","PeriodicalId":21603,"journal":{"name":"Scientific Research and Essays","volume":"13 1","pages":"92-104"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5897/SRE2018.6564","citationCount":"0","resultStr":"{\"title\":\"New application of principal component regression in estimation of electrical energy consumption in an abnormal automatic meter reading system\",\"authors\":\"Kantikoon Visavat, Kinnares Vijit\",\"doi\":\"10.5897/SRE2018.6564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new application of principal component regression (PCR) for estimating electrical energy consumption in case of abnormal automatic meter reading (AMR) systems. These events occur in a delivery metering system such as problems from mistakenly setting and connecting meters in electrical systems, broken metering accessories, etc. The estimation is performed by using MATLAB. The unclean sampled input data is used to estimate the target output data. The mean absolute percentage error (MAPE) is used as estimation performance. In this proposed estimation, load profiles obtained from the AMR are used as input data for training to create estimation model and for testing to validate model. Estimated results are verified by comparison between the proposed PCR application and other applications such as simple linear regression (SLR), multiple linear regression (MLR). The proposed PCR gives the best error results of MAPE for the lost electrical energy estimation.\",\"PeriodicalId\":21603,\"journal\":{\"name\":\"Scientific Research and Essays\",\"volume\":\"13 1\",\"pages\":\"92-104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5897/SRE2018.6564\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Research and Essays\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5897/SRE2018.6564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Research and Essays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5897/SRE2018.6564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了主成分回归(PCR)在自动抄表(AMR)系统异常情况下估计电能消耗的新应用。这些事件发生在交付计量系统中,例如电气系统中错误设置和连接仪表,计量附件损坏等问题。利用MATLAB进行估计。不洁采样的输入数据被用来估计目标输出数据。使用平均绝对百分比误差(MAPE)作为估计性能。在这个建议的估计中,从AMR获得的负载概况被用作训练的输入数据来创建估计模型,并用于测试来验证模型。通过将所提出的PCR应用与其他应用如简单线性回归(SLR)、多元线性回归(MLR)进行比较,验证了估计结果。所提出的聚合酶链反应给出了MAPE估计损失电能的最佳误差结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New application of principal component regression in estimation of electrical energy consumption in an abnormal automatic meter reading system
This paper proposes a new application of principal component regression (PCR) for estimating electrical energy consumption in case of abnormal automatic meter reading (AMR) systems. These events occur in a delivery metering system such as problems from mistakenly setting and connecting meters in electrical systems, broken metering accessories, etc. The estimation is performed by using MATLAB. The unclean sampled input data is used to estimate the target output data. The mean absolute percentage error (MAPE) is used as estimation performance. In this proposed estimation, load profiles obtained from the AMR are used as input data for training to create estimation model and for testing to validate model. Estimated results are verified by comparison between the proposed PCR application and other applications such as simple linear regression (SLR), multiple linear regression (MLR). The proposed PCR gives the best error results of MAPE for the lost electrical energy estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Research and Essays
Scientific Research and Essays 综合性期刊-综合性期刊
自引率
0.00%
发文量
6
审稿时长
3.3 months
期刊最新文献
Analyzing determinants shaping access to and perceptions of campus food banks in maritime university settings Production of feed grade L-lysine using solid state fermentation for the Nigerian market Endogenous knowledge and farming methods for Jatropha curcas L. in southern Chad Identification of the spatial patterns of air pollution and its sources in Ogui New Layout, South-East of Nigeria, using remote sensing and GIS technology Diurnal variability of the magnetospheric convective electric field (MCEF) from 1996 to 2019: Comparative investigation into the signatures of the geoeffectiveness of coronal mass ejections and magnetic clouds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1