G. Blanchard, Bryce A. Bowlsbey, James R. Dyess, Ryan D. Rumsey, Justin B. Woodring
{"title":"用于大学生大气红外热通量和温室气体吸收波段观测的改进分光光度计","authors":"G. Blanchard, Bryce A. Bowlsbey, James R. Dyess, Ryan D. Rumsey, Justin B. Woodring","doi":"10.1119/5.0135029","DOIUrl":null,"url":null,"abstract":"We present an experiment investigating the physics of the atmospheric greenhouse effect that can be performed by undergraduate physics students. The students construct a three-channel spectral photometer to observe the infrared heat flux in the atmosphere. With this spectral photometer, the students observe the difference in heat flux between the portion of the IR spectrum that is absorbed by water vapor and carbon dioxide and the portion that is not absorbed by atmospheric constituents. The students discover that Earth's surface is warmed by radiation from the greenhouse gas absorption bands, and the radiation of heat to space is retarded by the absorption bands. One component of the experiment is performed on the ground and the other component is performed in the atmosphere using a high-altitude balloon. The students then compare their results to a simulation of infrared radiation transport in the atmosphere.","PeriodicalId":7589,"journal":{"name":"American Journal of Physics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved spectral photometer for undergraduate observations of atmospheric infrared heat flux and greenhouse gas absorption bands\",\"authors\":\"G. Blanchard, Bryce A. Bowlsbey, James R. Dyess, Ryan D. Rumsey, Justin B. Woodring\",\"doi\":\"10.1119/5.0135029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an experiment investigating the physics of the atmospheric greenhouse effect that can be performed by undergraduate physics students. The students construct a three-channel spectral photometer to observe the infrared heat flux in the atmosphere. With this spectral photometer, the students observe the difference in heat flux between the portion of the IR spectrum that is absorbed by water vapor and carbon dioxide and the portion that is not absorbed by atmospheric constituents. The students discover that Earth's surface is warmed by radiation from the greenhouse gas absorption bands, and the radiation of heat to space is retarded by the absorption bands. One component of the experiment is performed on the ground and the other component is performed in the atmosphere using a high-altitude balloon. The students then compare their results to a simulation of infrared radiation transport in the atmosphere.\",\"PeriodicalId\":7589,\"journal\":{\"name\":\"American Journal of Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1119/5.0135029\",\"RegionNum\":4,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1119/5.0135029","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Improved spectral photometer for undergraduate observations of atmospheric infrared heat flux and greenhouse gas absorption bands
We present an experiment investigating the physics of the atmospheric greenhouse effect that can be performed by undergraduate physics students. The students construct a three-channel spectral photometer to observe the infrared heat flux in the atmosphere. With this spectral photometer, the students observe the difference in heat flux between the portion of the IR spectrum that is absorbed by water vapor and carbon dioxide and the portion that is not absorbed by atmospheric constituents. The students discover that Earth's surface is warmed by radiation from the greenhouse gas absorption bands, and the radiation of heat to space is retarded by the absorption bands. One component of the experiment is performed on the ground and the other component is performed in the atmosphere using a high-altitude balloon. The students then compare their results to a simulation of infrared radiation transport in the atmosphere.
期刊介绍:
The mission of the American Journal of Physics (AJP) is to publish articles on the educational and cultural aspects of physics that are useful, interesting, and accessible to a diverse audience of physics students, educators, and researchers. Our audience generally reads outside their specialties to broaden their understanding of physics and to expand and enhance their pedagogical toolkits at the undergraduate and graduate levels.