稳定剂和热塑性聚氨酯对三维印刷光致变色木粉/聚乳酸复合材料性能的影响

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING 3D Printing and Additive Manufacturing Pub Date : 2023-12-01 Epub Date: 2023-12-11 DOI:10.1089/3dp.2021.0170
Haiying Yang, Dong Wang, Hongjie Bi, Zechun Ren, Min Xu, Zhenhua Huang, Liping Cai
{"title":"稳定剂和热塑性聚氨酯对三维印刷光致变色木粉/聚乳酸复合材料性能的影响","authors":"Haiying Yang, Dong Wang, Hongjie Bi, Zechun Ren, Min Xu, Zhenhua Huang, Liping Cai","doi":"10.1089/3dp.2021.0170","DOIUrl":null,"url":null,"abstract":"<p><p>This study was aimed at investigating the photofatigue resistance and mechanical properties of photochromic wood-plastic composites using a stabilizer complex-AH (antioxidant 1010 and hindered amine light stabilizer HALS 770)-with different contents of thermoplastic polyurethane (TPU), which was prepared by the melt-blending extrusion process and three-dimensional (3D) printing. Photofatigue resistance, mechanical property, microtopography, and thermal analyses of 3D printed samples were performed. The results showed that the difference in surface color of composites improved by 26.7% with addition of AH after 10 days of accelerated aging, whereas the mechanical strength decreased. Upon adding TPU, composites' impact strength significantly increased by 25.48% and 87.87% with 10% and 20% addition, respectively. Meanwhile, the interface compatibilities between the components were enhanced. The differential scanning calorimetry and thermogravimetric analysis results indicated that 10% TPU could improve the thermal stability of composites.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726182/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effect of Stabilizers and Thermoplastic Polyurethane on the Properties of Three-Dimensional Printed Photochromic Wood Flour/Polylactic Acid Composites.\",\"authors\":\"Haiying Yang, Dong Wang, Hongjie Bi, Zechun Ren, Min Xu, Zhenhua Huang, Liping Cai\",\"doi\":\"10.1089/3dp.2021.0170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study was aimed at investigating the photofatigue resistance and mechanical properties of photochromic wood-plastic composites using a stabilizer complex-AH (antioxidant 1010 and hindered amine light stabilizer HALS 770)-with different contents of thermoplastic polyurethane (TPU), which was prepared by the melt-blending extrusion process and three-dimensional (3D) printing. Photofatigue resistance, mechanical property, microtopography, and thermal analyses of 3D printed samples were performed. The results showed that the difference in surface color of composites improved by 26.7% with addition of AH after 10 days of accelerated aging, whereas the mechanical strength decreased. Upon adding TPU, composites' impact strength significantly increased by 25.48% and 87.87% with 10% and 20% addition, respectively. Meanwhile, the interface compatibilities between the components were enhanced. The differential scanning calorimetry and thermogravimetric analysis results indicated that 10% TPU could improve the thermal stability of composites.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726182/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2021.0170\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2021.0170","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在研究光致变色木塑复合材料的抗光疲劳性和力学性能,该复合材料使用了不同含量的热塑性聚氨酯(TPU)稳定剂复合物-AH(抗氧化剂 1010 和受阻胺光稳定剂 HALS 770),通过熔融混合挤出工艺和三维(3D)打印制备而成。对三维打印样品进行了抗光疲劳性、机械性能、微观形貌和热分析。结果表明,经过 10 天的加速老化后,添加 AH 后,复合材料的表面颜色差异提高了 26.7%,而机械强度却降低了。添加热塑性聚氨酯后,复合材料的冲击强度显著提高,添加量分别为 10%和 20%,提高了 25.48% 和 87.87%。同时,各组分之间的界面相容性也得到了提高。差示扫描量热法和热重分析结果表明,10% 的热塑性聚氨酯可提高复合材料的热稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Stabilizers and Thermoplastic Polyurethane on the Properties of Three-Dimensional Printed Photochromic Wood Flour/Polylactic Acid Composites.

This study was aimed at investigating the photofatigue resistance and mechanical properties of photochromic wood-plastic composites using a stabilizer complex-AH (antioxidant 1010 and hindered amine light stabilizer HALS 770)-with different contents of thermoplastic polyurethane (TPU), which was prepared by the melt-blending extrusion process and three-dimensional (3D) printing. Photofatigue resistance, mechanical property, microtopography, and thermal analyses of 3D printed samples were performed. The results showed that the difference in surface color of composites improved by 26.7% with addition of AH after 10 days of accelerated aging, whereas the mechanical strength decreased. Upon adding TPU, composites' impact strength significantly increased by 25.48% and 87.87% with 10% and 20% addition, respectively. Meanwhile, the interface compatibilities between the components were enhanced. The differential scanning calorimetry and thermogravimetric analysis results indicated that 10% TPU could improve the thermal stability of composites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
期刊最新文献
Characterization of Chemically Treated Flexible Body-Centered Cubic Lattice Structures Fabricated by Fused Filament Fabrication Process. Coupled Computational Fluid Dynamics-Discrete Element Method Model for Investigation of Powder Effects in Nonconventional Laser Powder Bed Fusion Process. A Comprehensive Review on Manufacturing and Characterization of Polyetheretherketone Polymers for Dental Implant Applications. Fatigue and Corrosion Evaluation of L-PBF 316L Stainless Steel Having Undergone a Self-Terminating Etching Process for Surface Finish Improvement. A Review on Residual Stress in Metal Additive Manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1