{"title":"能量结构理论:一个通用的统一热力学理论","authors":"Saeed Shahsavari, S. Boutorabi","doi":"10.5541/ijot.1257725","DOIUrl":null,"url":null,"abstract":"This study, while reviewing some of the established unified equations and fundamentals of the energy structure and providing a detailed interpretation of their physical concepts, expands the relevant equations for new topics and applications, and in fact, establishes novel results and equations from the energy structure analysis. In fact, this paper establishes an energy components-based-general model inspired by the first and second laws of thermodynamics as well as using a new division to the total energy of the system. The established model is completed by extracting the physical direction for the feasible processes based on the energy components of the system. As two of the most important achievements of the energy components approach, using a new quasi-statistical approach as well as a novel energy conservation principle, an entropy equation is gained that has a common basis as the Boltzmann entropy equation as well as a general solution to the different formulations of the second law of thermodynamics is established. The established equations are gained without any limiting assumptions, and are governed to any physical system. Several basic examples have been studied, and matching the obtained results with expected ones is shown.","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy Structure Theory: A General Unified Thermodynamics Theory\",\"authors\":\"Saeed Shahsavari, S. Boutorabi\",\"doi\":\"10.5541/ijot.1257725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study, while reviewing some of the established unified equations and fundamentals of the energy structure and providing a detailed interpretation of their physical concepts, expands the relevant equations for new topics and applications, and in fact, establishes novel results and equations from the energy structure analysis. In fact, this paper establishes an energy components-based-general model inspired by the first and second laws of thermodynamics as well as using a new division to the total energy of the system. The established model is completed by extracting the physical direction for the feasible processes based on the energy components of the system. As two of the most important achievements of the energy components approach, using a new quasi-statistical approach as well as a novel energy conservation principle, an entropy equation is gained that has a common basis as the Boltzmann entropy equation as well as a general solution to the different formulations of the second law of thermodynamics is established. The established equations are gained without any limiting assumptions, and are governed to any physical system. Several basic examples have been studied, and matching the obtained results with expected ones is shown.\",\"PeriodicalId\":14438,\"journal\":{\"name\":\"International Journal of Thermodynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5541/ijot.1257725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5541/ijot.1257725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Energy Structure Theory: A General Unified Thermodynamics Theory
This study, while reviewing some of the established unified equations and fundamentals of the energy structure and providing a detailed interpretation of their physical concepts, expands the relevant equations for new topics and applications, and in fact, establishes novel results and equations from the energy structure analysis. In fact, this paper establishes an energy components-based-general model inspired by the first and second laws of thermodynamics as well as using a new division to the total energy of the system. The established model is completed by extracting the physical direction for the feasible processes based on the energy components of the system. As two of the most important achievements of the energy components approach, using a new quasi-statistical approach as well as a novel energy conservation principle, an entropy equation is gained that has a common basis as the Boltzmann entropy equation as well as a general solution to the different formulations of the second law of thermodynamics is established. The established equations are gained without any limiting assumptions, and are governed to any physical system. Several basic examples have been studied, and matching the obtained results with expected ones is shown.
期刊介绍:
The purpose and scope of the International Journal of Thermodynamics is · to provide a forum for the publication of original theoretical and applied work in the field of thermodynamics as it relates to systems, states, processes, and both non-equilibrium and equilibrium phenomena at all temporal and spatial scales. · to provide a multidisciplinary and international platform for the dissemination to academia and industry of both scientific and engineering contributions, which touch upon a broad class of disciplines that are foundationally linked to thermodynamics and the methods and analyses derived there from. · to assess how both the first and particularly the second laws of thermodynamics touch upon these disciplines. · to highlight innovative & pioneer research in the field of thermodynamics in the following subjects (but not limited to the following, novel research in new areas are strongly suggested): o Entropy in thermodynamics and information theory. o Thermodynamics in process intensification. o Biothermodynamics (topics such as self-organization far from equilibrium etc.) o Thermodynamics of nonadditive systems. o Nonequilibrium thermal complex systems. o Sustainable design and thermodynamics. o Engineering thermodynamics. o Energy.