{"title":"改进双频降水雷达降雨率估计的贝叶斯校正方法","authors":"Yingzhao Ma, V. Chandrasekar, S. Biswas","doi":"10.2151/jmsj.2020-025","DOIUrl":null,"url":null,"abstract":"The accurate estimation of precipitation is an important objective for the Dual-frequency Precipitation Radar (DPR), which is located on board the Global Precipitation Measurement (GPM) satellite core observatory. In this study, a Bayesian correction (BC) approach is proposed to improve the DPR’s instantaneous rainfall rate product. Ground dual-polarization radar (GR) observations are used as references, and a log-transformed Gaussian distribution is assumed as the instantaneous rainfall process. Additionally, a generalized regression model is adopted in the BC algorithm. Rainfall intensities such as light, moderate, and heavy rain and their variable influences on the model’s performance are considered. The BC approach quantifies the predictive uncertainties associated with the Bayesiancorrected DPR (DPR_BC) rainfall rate estimates. To demonstrate the concepts developed in this study, data from the GPM overpasses of the Weather Service Surveillance Radar (WSR-88D), KHGX, in Houston, Texas, between April 2014 and June 2018 are used. Observation errors in the DPR instantaneous rainfall rate estimates are analyzed as a function of rainfall intensity. Moreover, the best-performing BC model is implemented in three GPM-overpass cases with heavy rainfall records across the southeastern United States. The results show that the DPR_BC rainfall rate estimates have superior skill scores and are in better agreement with the GR references than with the DPR estimates. This study demonstrates the potential of the proposed BC algorithm for enhancing the instantaneous rainfall rate product from spaceborne radar equipment.","PeriodicalId":17476,"journal":{"name":"Journal of the Meteorological Society of Japan","volume":"98 1","pages":"511-525"},"PeriodicalIF":2.4000,"publicationDate":"2020-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Bayesian Correction Approach for Improving Dual-frequency Precipitation Radar Rainfall Rate Estimates\",\"authors\":\"Yingzhao Ma, V. Chandrasekar, S. Biswas\",\"doi\":\"10.2151/jmsj.2020-025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accurate estimation of precipitation is an important objective for the Dual-frequency Precipitation Radar (DPR), which is located on board the Global Precipitation Measurement (GPM) satellite core observatory. In this study, a Bayesian correction (BC) approach is proposed to improve the DPR’s instantaneous rainfall rate product. Ground dual-polarization radar (GR) observations are used as references, and a log-transformed Gaussian distribution is assumed as the instantaneous rainfall process. Additionally, a generalized regression model is adopted in the BC algorithm. Rainfall intensities such as light, moderate, and heavy rain and their variable influences on the model’s performance are considered. The BC approach quantifies the predictive uncertainties associated with the Bayesiancorrected DPR (DPR_BC) rainfall rate estimates. To demonstrate the concepts developed in this study, data from the GPM overpasses of the Weather Service Surveillance Radar (WSR-88D), KHGX, in Houston, Texas, between April 2014 and June 2018 are used. Observation errors in the DPR instantaneous rainfall rate estimates are analyzed as a function of rainfall intensity. Moreover, the best-performing BC model is implemented in three GPM-overpass cases with heavy rainfall records across the southeastern United States. The results show that the DPR_BC rainfall rate estimates have superior skill scores and are in better agreement with the GR references than with the DPR estimates. This study demonstrates the potential of the proposed BC algorithm for enhancing the instantaneous rainfall rate product from spaceborne radar equipment.\",\"PeriodicalId\":17476,\"journal\":{\"name\":\"Journal of the Meteorological Society of Japan\",\"volume\":\"98 1\",\"pages\":\"511-525\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2020-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Meteorological Society of Japan\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2151/jmsj.2020-025\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Meteorological Society of Japan","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/jmsj.2020-025","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
A Bayesian Correction Approach for Improving Dual-frequency Precipitation Radar Rainfall Rate Estimates
The accurate estimation of precipitation is an important objective for the Dual-frequency Precipitation Radar (DPR), which is located on board the Global Precipitation Measurement (GPM) satellite core observatory. In this study, a Bayesian correction (BC) approach is proposed to improve the DPR’s instantaneous rainfall rate product. Ground dual-polarization radar (GR) observations are used as references, and a log-transformed Gaussian distribution is assumed as the instantaneous rainfall process. Additionally, a generalized regression model is adopted in the BC algorithm. Rainfall intensities such as light, moderate, and heavy rain and their variable influences on the model’s performance are considered. The BC approach quantifies the predictive uncertainties associated with the Bayesiancorrected DPR (DPR_BC) rainfall rate estimates. To demonstrate the concepts developed in this study, data from the GPM overpasses of the Weather Service Surveillance Radar (WSR-88D), KHGX, in Houston, Texas, between April 2014 and June 2018 are used. Observation errors in the DPR instantaneous rainfall rate estimates are analyzed as a function of rainfall intensity. Moreover, the best-performing BC model is implemented in three GPM-overpass cases with heavy rainfall records across the southeastern United States. The results show that the DPR_BC rainfall rate estimates have superior skill scores and are in better agreement with the GR references than with the DPR estimates. This study demonstrates the potential of the proposed BC algorithm for enhancing the instantaneous rainfall rate product from spaceborne radar equipment.
期刊介绍:
JMSJ publishes Articles and Notes and Correspondence that report novel scientific discoveries or technical developments that advance understanding in meteorology and related sciences. The journal’s broad scope includes meteorological observations, modeling, data assimilation, analyses, global and regional climate research, satellite remote sensing, chemistry and transport, and dynamic meteorology including geophysical fluid dynamics. In particular, JMSJ welcomes papers related to Asian monsoons, climate and mesoscale models, and numerical weather forecasts. Insightful and well-structured original Review Articles that describe the advances and challenges in meteorology and related sciences are also welcome.