具有界面裂纹状孔隙的多层超材料板的设计、制造及导波传播的实验理论研究

IF 1.3 Q3 ACOUSTICS Acoustics (Basel, Switzerland) Pub Date : 2023-01-31 DOI:10.3390/acoustics5010008
M. Golub, I. Moroz, Yanzheng Wang, A. D. Khanazaryan, Kirill K. Kanishchev, Evgenia A. Okoneshnikova, A. Shpak, S. Mareev, Chuanzeng Zhang
{"title":"具有界面裂纹状孔隙的多层超材料板的设计、制造及导波传播的实验理论研究","authors":"M. Golub, I. Moroz, Yanzheng Wang, A. D. Khanazaryan, Kirill K. Kanishchev, Evgenia A. Okoneshnikova, A. Shpak, S. Mareev, Chuanzeng Zhang","doi":"10.3390/acoustics5010008","DOIUrl":null,"url":null,"abstract":"A novel kind of acoustic metamaterials (AMMs) with unit cells composed of two layers made of dissimilar materials with a crack-like void situated at the interface between bars is considered. Recently, the authors showed numerically that this novel kind of AMMs can provide unidirectional propagation of guided waves. Several AMM specimens (the finite stack of periodic elastic layers with and without voids) have been manufactured using additive manufacturing techniques and regular gluing. The details of the manufacturing process are discussed. In the experiment, the elastic waves have been excited by a rectangular piezoelectric wafer active transducer bonded at the surface of the specimen. Vibrations of the opposite side of the AMM specimen are measured via a piezoelectric sensor. The band gaps are observed in the experiment and values of their width and location correlate with numerically predicted ones.","PeriodicalId":72045,"journal":{"name":"Acoustics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Design and Manufacturing of the Multi-Layered Metamaterial Plate with Interfacial Crack-like Voids and Experimental-Theoretical Study of the Guided Wave Propagation\",\"authors\":\"M. Golub, I. Moroz, Yanzheng Wang, A. D. Khanazaryan, Kirill K. Kanishchev, Evgenia A. Okoneshnikova, A. Shpak, S. Mareev, Chuanzeng Zhang\",\"doi\":\"10.3390/acoustics5010008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel kind of acoustic metamaterials (AMMs) with unit cells composed of two layers made of dissimilar materials with a crack-like void situated at the interface between bars is considered. Recently, the authors showed numerically that this novel kind of AMMs can provide unidirectional propagation of guided waves. Several AMM specimens (the finite stack of periodic elastic layers with and without voids) have been manufactured using additive manufacturing techniques and regular gluing. The details of the manufacturing process are discussed. In the experiment, the elastic waves have been excited by a rectangular piezoelectric wafer active transducer bonded at the surface of the specimen. Vibrations of the opposite side of the AMM specimen are measured via a piezoelectric sensor. The band gaps are observed in the experiment and values of their width and location correlate with numerically predicted ones.\",\"PeriodicalId\":72045,\"journal\":{\"name\":\"Acoustics (Basel, Switzerland)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/acoustics5010008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/acoustics5010008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 3

摘要

考虑了一种新型声学超材料(AMMs),其晶胞由两层不同材料制成,在棒与棒之间的界面处有裂纹状空隙。最近,作者在数值上表明,这种新型AMM可以提供导波的单向传播。已经使用增材制造技术和常规胶合制造了几个AMM试样(具有和不具有孔隙的周期性弹性层的有限堆叠)。讨论了制造过程的细节。在实验中,弹性波是由结合在样品表面的矩形压电晶片有源换能器激发的。AMM试样相对侧的振动通过压电传感器进行测量。在实验中观察到了带隙,其宽度和位置的值与数值预测的值相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Manufacturing of the Multi-Layered Metamaterial Plate with Interfacial Crack-like Voids and Experimental-Theoretical Study of the Guided Wave Propagation
A novel kind of acoustic metamaterials (AMMs) with unit cells composed of two layers made of dissimilar materials with a crack-like void situated at the interface between bars is considered. Recently, the authors showed numerically that this novel kind of AMMs can provide unidirectional propagation of guided waves. Several AMM specimens (the finite stack of periodic elastic layers with and without voids) have been manufactured using additive manufacturing techniques and regular gluing. The details of the manufacturing process are discussed. In the experiment, the elastic waves have been excited by a rectangular piezoelectric wafer active transducer bonded at the surface of the specimen. Vibrations of the opposite side of the AMM specimen are measured via a piezoelectric sensor. The band gaps are observed in the experiment and values of their width and location correlate with numerically predicted ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Data-Driven Discovery of Anomaly-Sensitive Parameters from Uvula Wake Flows Using Wavelet Analyses and Poincaré Maps Importance of Noise Hygiene in Dairy Cattle Farming—A Review Finite Element–Boundary Element Acoustic Backscattering with Model Reduction of Surface Pressure Based on Coherent Clusters Applying New Algorithms for Numerical Integration on the Sphere in the Far Field of Sound Pressure Sound Environment during Dental Treatment in Relation to COVID-19 Pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1