新冠肺炎疫情的第二量化方法

L. Mondaini, B. Meirose, F. Mondaini
{"title":"新冠肺炎疫情的第二量化方法","authors":"L. Mondaini, B. Meirose, F. Mondaini","doi":"10.1142/S1793048021500090","DOIUrl":null,"url":null,"abstract":"In this article, a stochastic SIR-type model for COVID-19 epidemic is built using the standard field theoretical language based on creation and annihilation operators. From the model, we derive the time evolution of the mean number of infectious (active cases) and deceased individuals. In order to capture the effects of lockdown and social distancing, we use a time-dependent infection rate. The results are in good agreement with the data for three different waves of epidemic activity in South Korea.","PeriodicalId":88835,"journal":{"name":"Biophysical reviews and letters","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Second Quantization Approach to COVID-19 Epidemic\",\"authors\":\"L. Mondaini, B. Meirose, F. Mondaini\",\"doi\":\"10.1142/S1793048021500090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, a stochastic SIR-type model for COVID-19 epidemic is built using the standard field theoretical language based on creation and annihilation operators. From the model, we derive the time evolution of the mean number of infectious (active cases) and deceased individuals. In order to capture the effects of lockdown and social distancing, we use a time-dependent infection rate. The results are in good agreement with the data for three different waves of epidemic activity in South Korea.\",\"PeriodicalId\":88835,\"journal\":{\"name\":\"Biophysical reviews and letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews and letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793048021500090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews and letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793048021500090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用基于创建和湮灭算子的标准场论语言,建立了新冠肺炎疫情的随机SIR型模型。根据该模型,我们得出了感染(活跃病例)和死亡个体平均数量的时间演变。为了捕捉封锁和保持社交距离的影响,我们使用了与时间相关的感染率。结果与韩国三波不同疫情活动的数据非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Second Quantization Approach to COVID-19 Epidemic
In this article, a stochastic SIR-type model for COVID-19 epidemic is built using the standard field theoretical language based on creation and annihilation operators. From the model, we derive the time evolution of the mean number of infectious (active cases) and deceased individuals. In order to capture the effects of lockdown and social distancing, we use a time-dependent infection rate. The results are in good agreement with the data for three different waves of epidemic activity in South Korea.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Repair and Regeneration of Bone Tissue by Scaffold Implant — A Biomechanical Review Markov Chains to Explore the Nanosystems for the Biophysical Studies of Cancers Role of Allee and Fear for Controlling Chaos in a Predator–Prey System with Circulation of Disease in Predator On Influence of Several Factors on Development of Tumors Role of Alternative Food in Controlling Chaotic Dynamics in an Eco-Epidemiological Model with Strong Allee Effects in Prey Populations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1