主成分分析在钢材料成分分析中的应用

Miran Othman Tofiq, Kawa Muhammad Jamal Rasheed
{"title":"主成分分析在钢材料成分分析中的应用","authors":"Miran Othman Tofiq, Kawa Muhammad Jamal Rasheed","doi":"10.24017/science.2022.2.7","DOIUrl":null,"url":null,"abstract":"In this research, we made use of the principal component analysis (PCA) technique, which is a multivariate statistical method that transforms a fixed number of correlated variables into a fixed number of orthogonal, uncorrelated axes known as principal components by making use of orthogonal transformation. In other words, the PCA technique converts correlated variables into uncorrelated axes. To minimize the dimensionality of a data set that included a large range of connected variables while yet keeping as much variance within the data set as possible, we employed a method called principal component analysis (PCA). This allowed us to analyze eleven steel components. This is accomplished by reworking the unique variables into a brand new set of uncorrelated variables known as principal components (PC). The principal components are ordered in such a way that they preserve the majority of the variation that is found in all of the unique variables. This is done by reworking the unique variables into a brand new set of uncorrelated variables called principal components (PC). We are able to come to the conclusion that the five principal components that collectively account for approximately sixty-seven percent of the variance in all of the data are the best principal components because this percentage represents the best principal aspect of all of the 11 principal components.","PeriodicalId":17866,"journal":{"name":"Kurdistan Journal of Applied Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Principal Component Analysis for Steel Material Components\",\"authors\":\"Miran Othman Tofiq, Kawa Muhammad Jamal Rasheed\",\"doi\":\"10.24017/science.2022.2.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we made use of the principal component analysis (PCA) technique, which is a multivariate statistical method that transforms a fixed number of correlated variables into a fixed number of orthogonal, uncorrelated axes known as principal components by making use of orthogonal transformation. In other words, the PCA technique converts correlated variables into uncorrelated axes. To minimize the dimensionality of a data set that included a large range of connected variables while yet keeping as much variance within the data set as possible, we employed a method called principal component analysis (PCA). This allowed us to analyze eleven steel components. This is accomplished by reworking the unique variables into a brand new set of uncorrelated variables known as principal components (PC). The principal components are ordered in such a way that they preserve the majority of the variation that is found in all of the unique variables. This is done by reworking the unique variables into a brand new set of uncorrelated variables called principal components (PC). We are able to come to the conclusion that the five principal components that collectively account for approximately sixty-seven percent of the variance in all of the data are the best principal components because this percentage represents the best principal aspect of all of the 11 principal components.\",\"PeriodicalId\":17866,\"journal\":{\"name\":\"Kurdistan Journal of Applied Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kurdistan Journal of Applied Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24017/science.2022.2.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kurdistan Journal of Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24017/science.2022.2.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们使用了主成分分析(PCA)技术,这是一种多元统计方法,通过正交变换将固定数量的相关变量转换为固定数量的正交、不相关轴,称为主成分。换句话说,PCA技术将相关变量转换为不相关的轴。为了最小化包含大量连通变量的数据集的维数,同时在数据集中保持尽可能多的方差,我们采用了一种称为主成分分析(PCA)的方法。这使我们能够分析11个钢构件。这是通过将唯一变量重新设计成一组全新的不相关变量来实现的,这些变量被称为主成分(PC)。主成分的排序方式是,它们保留了所有唯一变量中的大部分变化。这是通过将唯一变量重新设计成一组全新的不相关变量来实现的,这些变量被称为主成分(PC)。我们能够得出的结论是,总共占所有数据方差约67%的五个主要成分是最好的主要成分,因为这个百分比代表了所有11个主要成分中最好的主要方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Principal Component Analysis for Steel Material Components
In this research, we made use of the principal component analysis (PCA) technique, which is a multivariate statistical method that transforms a fixed number of correlated variables into a fixed number of orthogonal, uncorrelated axes known as principal components by making use of orthogonal transformation. In other words, the PCA technique converts correlated variables into uncorrelated axes. To minimize the dimensionality of a data set that included a large range of connected variables while yet keeping as much variance within the data set as possible, we employed a method called principal component analysis (PCA). This allowed us to analyze eleven steel components. This is accomplished by reworking the unique variables into a brand new set of uncorrelated variables known as principal components (PC). The principal components are ordered in such a way that they preserve the majority of the variation that is found in all of the unique variables. This is done by reworking the unique variables into a brand new set of uncorrelated variables called principal components (PC). We are able to come to the conclusion that the five principal components that collectively account for approximately sixty-seven percent of the variance in all of the data are the best principal components because this percentage represents the best principal aspect of all of the 11 principal components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
16
审稿时长
12 weeks
期刊最新文献
A Wavelet Shrinkage Mixed with a Single-level 2D Discrete Wavelet Transform for Image Denoising Assessing the Impact of Modified Initial Abstraction Ratios and Slope Adjusted Curve Number on Runoff Prediction in the Watersheds of Sulaimani Province. Assessment of the Antifungal Activity of PMMA-MgO and PMMA-Ag Nanocomposite Multi-Label Feature Selection with Graph-based Ant Colony Optimization and Generalized Jaccard Similarity Evaluate the Implementation of WHO Infection Prevention and Control Core Components Among Health Care Facilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1