{"title":"行政记录中个人种族预测的错误分类和偏差","authors":"Lisa P. Argyle, Michael J. Barber","doi":"10.1017/s0003055423000229","DOIUrl":null,"url":null,"abstract":"We show that a common method of predicting individuals’ race in administrative records, Bayesian Improved Surname Geocoding (BISG), produces misclassification errors that are strongly correlated with demographic and socioeconomic factors. In addition to the high error rates for some racial subgroups, the misclassification rates are correlated with the political and economic characteristics of a voter’s neighborhood. Racial and ethnic minorities who live in wealthy, highly educated, and politically active areas are most likely to be misclassified as white by BISG. Inferences about the relationship between sociodemographic factors and political outcomes, like voting, are likely to be biased in models using BISG to infer race. We develop an improved method in which the BISG estimates are incorporated into a machine learning model that accounts for class imbalance and incorporates individual and neighborhood characteristics. Our model decreases the misclassification rates among non-white individuals, in some cases by as much as 50%.","PeriodicalId":48451,"journal":{"name":"American Political Science Review","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Misclassification and Bias in Predictions of Individual Ethnicity from Administrative Records\",\"authors\":\"Lisa P. Argyle, Michael J. Barber\",\"doi\":\"10.1017/s0003055423000229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that a common method of predicting individuals’ race in administrative records, Bayesian Improved Surname Geocoding (BISG), produces misclassification errors that are strongly correlated with demographic and socioeconomic factors. In addition to the high error rates for some racial subgroups, the misclassification rates are correlated with the political and economic characteristics of a voter’s neighborhood. Racial and ethnic minorities who live in wealthy, highly educated, and politically active areas are most likely to be misclassified as white by BISG. Inferences about the relationship between sociodemographic factors and political outcomes, like voting, are likely to be biased in models using BISG to infer race. We develop an improved method in which the BISG estimates are incorporated into a machine learning model that accounts for class imbalance and incorporates individual and neighborhood characteristics. Our model decreases the misclassification rates among non-white individuals, in some cases by as much as 50%.\",\"PeriodicalId\":48451,\"journal\":{\"name\":\"American Political Science Review\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Political Science Review\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1017/s0003055423000229\",\"RegionNum\":1,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLITICAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Political Science Review","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1017/s0003055423000229","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
Misclassification and Bias in Predictions of Individual Ethnicity from Administrative Records
We show that a common method of predicting individuals’ race in administrative records, Bayesian Improved Surname Geocoding (BISG), produces misclassification errors that are strongly correlated with demographic and socioeconomic factors. In addition to the high error rates for some racial subgroups, the misclassification rates are correlated with the political and economic characteristics of a voter’s neighborhood. Racial and ethnic minorities who live in wealthy, highly educated, and politically active areas are most likely to be misclassified as white by BISG. Inferences about the relationship between sociodemographic factors and political outcomes, like voting, are likely to be biased in models using BISG to infer race. We develop an improved method in which the BISG estimates are incorporated into a machine learning model that accounts for class imbalance and incorporates individual and neighborhood characteristics. Our model decreases the misclassification rates among non-white individuals, in some cases by as much as 50%.
期刊介绍:
American Political Science Review is political science''s premier scholarly research journal, providing peer-reviewed articles and review essays from subfields throughout the discipline. Areas covered include political theory, American politics, public policy, public administration, comparative politics, and international relations. APSR has published continuously since 1906. American Political Science Review is sold ONLY as part of a joint subscription with Perspectives on Politics and PS: Political Science & Politics.