A. Bulashenko, S. Piltyay, A. Polishchuk, O. Bulashenko, H. Kushnir, I. Zabegalov
{"title":"FDTD、FEM和波阵方法在波导偏振器电磁模拟中的准确性和一致性","authors":"A. Bulashenko, S. Piltyay, A. Polishchuk, O. Bulashenko, H. Kushnir, I. Zabegalov","doi":"10.7716/aem.v11i3.1694","DOIUrl":null,"url":null,"abstract":"Waveguide devices of polarization processing are key elements of modern dual-polarized antenna systems. Such antenna systems carry out polarization transformation and separation of signals with orthogonal polarizations in satellite communications and radar appliances. Well-known electrodynamic methods are used to simulate performance of such devices. This paper investigates the accuracy and mutual matching of wave matrix method with FDTD and FEM. The wave matrix method is based on the theory of scattering and transmission matrices. The main electromagnetic characteristics of a polarizer were obtained through the elements of these matrices. The main characteristics of a polarizer were compared. They include phase difference of orthogonal polarizations, level of voltage standing wave, ellipticity coefficient and level of cross-polarization isolation. Comparison of electromagnetic characteristics was carried out at the example of a waveguide iris polarizer for the operating frequency range from 13.0 to 14.4 GHz. In addition, the process of optimization of electromagnetic characteristics was carried out by changing the geometric dimensions of a polarizer. Calculated by different theoretical methods characteristics were compared and analyzed. Results, which were obtained by considered methods, are in good agreement","PeriodicalId":44653,"journal":{"name":"Advanced Electromagnetics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accuracy and Agreement of FDTD, FEM and Wave Matrix Methods for the Electromagnetic Simulation of Waveguide Polarizers\",\"authors\":\"A. Bulashenko, S. Piltyay, A. Polishchuk, O. Bulashenko, H. Kushnir, I. Zabegalov\",\"doi\":\"10.7716/aem.v11i3.1694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Waveguide devices of polarization processing are key elements of modern dual-polarized antenna systems. Such antenna systems carry out polarization transformation and separation of signals with orthogonal polarizations in satellite communications and radar appliances. Well-known electrodynamic methods are used to simulate performance of such devices. This paper investigates the accuracy and mutual matching of wave matrix method with FDTD and FEM. The wave matrix method is based on the theory of scattering and transmission matrices. The main electromagnetic characteristics of a polarizer were obtained through the elements of these matrices. The main characteristics of a polarizer were compared. They include phase difference of orthogonal polarizations, level of voltage standing wave, ellipticity coefficient and level of cross-polarization isolation. Comparison of electromagnetic characteristics was carried out at the example of a waveguide iris polarizer for the operating frequency range from 13.0 to 14.4 GHz. In addition, the process of optimization of electromagnetic characteristics was carried out by changing the geometric dimensions of a polarizer. Calculated by different theoretical methods characteristics were compared and analyzed. Results, which were obtained by considered methods, are in good agreement\",\"PeriodicalId\":44653,\"journal\":{\"name\":\"Advanced Electromagnetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electromagnetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7716/aem.v11i3.1694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electromagnetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7716/aem.v11i3.1694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Accuracy and Agreement of FDTD, FEM and Wave Matrix Methods for the Electromagnetic Simulation of Waveguide Polarizers
Waveguide devices of polarization processing are key elements of modern dual-polarized antenna systems. Such antenna systems carry out polarization transformation and separation of signals with orthogonal polarizations in satellite communications and radar appliances. Well-known electrodynamic methods are used to simulate performance of such devices. This paper investigates the accuracy and mutual matching of wave matrix method with FDTD and FEM. The wave matrix method is based on the theory of scattering and transmission matrices. The main electromagnetic characteristics of a polarizer were obtained through the elements of these matrices. The main characteristics of a polarizer were compared. They include phase difference of orthogonal polarizations, level of voltage standing wave, ellipticity coefficient and level of cross-polarization isolation. Comparison of electromagnetic characteristics was carried out at the example of a waveguide iris polarizer for the operating frequency range from 13.0 to 14.4 GHz. In addition, the process of optimization of electromagnetic characteristics was carried out by changing the geometric dimensions of a polarizer. Calculated by different theoretical methods characteristics were compared and analyzed. Results, which were obtained by considered methods, are in good agreement
期刊介绍:
Advanced Electromagnetics, is electronic peer-reviewed open access journal that publishes original research articles as well as review articles in all areas of electromagnetic science and engineering. The aim of the journal is to become a premier open access source of high quality research that spans the entire broad field of electromagnetics from classic to quantum electrodynamics.