高频机械冲击处理桥梁焊缝的高周变幅疲劳试验和设计框架

IF 1.2 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Steel Construction-Design and Research Pub Date : 2022-08-01 DOI:10.1002/stco.202200003
Poja Shams‐Hakimi, H. Al‐Karawi, M. Al‐Emrani
{"title":"高频机械冲击处理桥梁焊缝的高周变幅疲劳试验和设计框架","authors":"Poja Shams‐Hakimi, H. Al‐Karawi, M. Al‐Emrani","doi":"10.1002/stco.202200003","DOIUrl":null,"url":null,"abstract":"Fatigue enhancement by way of high‐frequency mechanical impact (HFMI) treatment can enable effective design and construction of steel bridges. However, bridges may experience high and varying mean stresses, the effects of which are not covered today by any design recommendation or in the literature on HFMI‐treated joints. In this study, fatigue experiments were conducted with realistic in‐service bridge loading, which revealed the same high fatigue performance as for constant amplitude loading. The effect of mean stress in spectrum loading was quantified and a method to account for it in an equivalent manner is proposed. A design framework has been developed for design and engineering purposes.","PeriodicalId":54183,"journal":{"name":"Steel Construction-Design and Research","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"High‐cycle variable amplitude fatigue experiments and design framework for bridge welds with high‐frequency mechanical impact treatment\",\"authors\":\"Poja Shams‐Hakimi, H. Al‐Karawi, M. Al‐Emrani\",\"doi\":\"10.1002/stco.202200003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fatigue enhancement by way of high‐frequency mechanical impact (HFMI) treatment can enable effective design and construction of steel bridges. However, bridges may experience high and varying mean stresses, the effects of which are not covered today by any design recommendation or in the literature on HFMI‐treated joints. In this study, fatigue experiments were conducted with realistic in‐service bridge loading, which revealed the same high fatigue performance as for constant amplitude loading. The effect of mean stress in spectrum loading was quantified and a method to account for it in an equivalent manner is proposed. A design framework has been developed for design and engineering purposes.\",\"PeriodicalId\":54183,\"journal\":{\"name\":\"Steel Construction-Design and Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Steel Construction-Design and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/stco.202200003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Steel Construction-Design and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/stco.202200003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

通过高频机械冲击(HFMI)处理来增强疲劳,可以实现有效的钢桥设计和施工。然而,桥梁可能会经历高且变化的平均应力,其影响目前没有任何设计建议或HFMI处理关节的文献。在本研究中,在实际使用的桥梁荷载下进行了疲劳试验,结果显示出与恒幅荷载相同的高疲劳性能。本文量化了平均应力在谱荷载中的作用,并提出了一种用等效方法来解释其影响的方法。设计框架是为设计和工程目的而开发的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High‐cycle variable amplitude fatigue experiments and design framework for bridge welds with high‐frequency mechanical impact treatment
Fatigue enhancement by way of high‐frequency mechanical impact (HFMI) treatment can enable effective design and construction of steel bridges. However, bridges may experience high and varying mean stresses, the effects of which are not covered today by any design recommendation or in the literature on HFMI‐treated joints. In this study, fatigue experiments were conducted with realistic in‐service bridge loading, which revealed the same high fatigue performance as for constant amplitude loading. The effect of mean stress in spectrum loading was quantified and a method to account for it in an equivalent manner is proposed. A design framework has been developed for design and engineering purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Steel Construction-Design and Research
Steel Construction-Design and Research CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
3.00
自引率
6.20%
发文量
63
期刊介绍: Steel Construction publishes peerreviewed papers covering the entire field of steel construction research. In the interests of "construction without depletion", it skilfully combines steel with other forms of construction employing concrete, glass, cables and membranes to form integrated steelwork systems. Since 2010 Steel Construction is the official journal for ECCS- European Convention for Constructional Steelwork members. You will find more information about membership on the ECCS homepage. Topics include: -Design and construction of structures -Methods of analysis and calculation -Experimental and theoretical research projects and results -Composite construction -Steel buildings and bridges -Cable and membrane structures -Structural glazing -Masts and towers -Vessels, cranes and hydraulic engineering structures -Fire protection -Lightweight structures
期刊最新文献
Lateral torsional buckling of I‐section simply supported beams with stepped height Place and date – Event – Details Preview: Steel Construction 1/2024 News: Steel Construction 4/2023 Content: Steel Construction 4/2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1