调控细胞疗法早期发展的创新

IF 4.1 Q2 IMMUNOLOGY Immunotherapy advances Pub Date : 2020-12-18 DOI:10.1093/immadv/ltaa011
A. Exley, J. McBlane
{"title":"调控细胞疗法早期发展的创新","authors":"A. Exley, J. McBlane","doi":"10.1093/immadv/ltaa011","DOIUrl":null,"url":null,"abstract":"\n Clinical need for paradigm shifts in efficacy and safety is driving the rapid and wide-ranging innovation in cell therapies for cancer beyond existing regulatory frameworks. Critical issues emerging during clinical trials frequently reflect unresolved elements of the regulation of innovation conundrum from earlier stages of development. We address this challenge using a global regulators’ perspective on the preclinical development of cell therapies, as a navigational aid to intended commercial use which maximises the clinical relevance of developmental data. We examine the implications of tumour targeting based on B cell, natural killer cell, conventional and unconventional T cell receptor domains; multiplex approaches; genetic manipulation strategies; and autologous versus allogeneic cell sources. We propose that detailed characterisation of both the cell source and final product is critical to optimising manufacture of individualised autologous or off the shelf allogeneic cell therapies, enabling product consistency to underpin extrapolation of clinical trial data to the expected commercial use. We highlight preclinical approaches to characterising target antigens including the Human Cell Atlas initiative, multi-dimensional cell culture, and safety testing against activated, proliferating or stressed control cells. Practical solutions are provided for preclinical toxicity studies when cell therapies target uniquely human tumour antigens, including illustrative mitigation measures for potential toxicity likely to support timely approval of first-in-human clinical trials. We recommend addressing the regulation of innovation conundrum through serial engagement between innovators and regulators early in the development of cell therapies for cancer, accelerating patient access while safeguarding against unacceptable toxicities.","PeriodicalId":73353,"journal":{"name":"Immunotherapy advances","volume":"1 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/immadv/ltaa011","citationCount":"2","resultStr":"{\"title\":\"Regulating innovation in the early development of cell therapies\",\"authors\":\"A. Exley, J. McBlane\",\"doi\":\"10.1093/immadv/ltaa011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Clinical need for paradigm shifts in efficacy and safety is driving the rapid and wide-ranging innovation in cell therapies for cancer beyond existing regulatory frameworks. Critical issues emerging during clinical trials frequently reflect unresolved elements of the regulation of innovation conundrum from earlier stages of development. We address this challenge using a global regulators’ perspective on the preclinical development of cell therapies, as a navigational aid to intended commercial use which maximises the clinical relevance of developmental data. We examine the implications of tumour targeting based on B cell, natural killer cell, conventional and unconventional T cell receptor domains; multiplex approaches; genetic manipulation strategies; and autologous versus allogeneic cell sources. We propose that detailed characterisation of both the cell source and final product is critical to optimising manufacture of individualised autologous or off the shelf allogeneic cell therapies, enabling product consistency to underpin extrapolation of clinical trial data to the expected commercial use. We highlight preclinical approaches to characterising target antigens including the Human Cell Atlas initiative, multi-dimensional cell culture, and safety testing against activated, proliferating or stressed control cells. Practical solutions are provided for preclinical toxicity studies when cell therapies target uniquely human tumour antigens, including illustrative mitigation measures for potential toxicity likely to support timely approval of first-in-human clinical trials. We recommend addressing the regulation of innovation conundrum through serial engagement between innovators and regulators early in the development of cell therapies for cancer, accelerating patient access while safeguarding against unacceptable toxicities.\",\"PeriodicalId\":73353,\"journal\":{\"name\":\"Immunotherapy advances\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2020-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1093/immadv/ltaa011\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunotherapy advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/immadv/ltaa011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunotherapy advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/immadv/ltaa011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

对有效性和安全性范式转变的临床需求正在推动癌症细胞疗法的快速和广泛创新,超越现有的监管框架。临床试验中出现的关键问题往往反映了早期开发阶段创新监管难题的未解决因素。我们利用全球监管机构对细胞疗法临床前开发的观点来应对这一挑战,作为预期商业用途的导航辅助,最大限度地提高开发数据的临床相关性。我们研究了基于B细胞、自然杀伤细胞、传统和非常规T细胞受体结构域的肿瘤靶向的意义;多路复用的方法;基因操作策略;自体和异体细胞来源。我们建议,细胞来源和最终产品的详细特征对于优化个体化自体或现成同种异体细胞疗法的制造至关重要,从而使产品一致性能够支撑临床试验数据推断到预期的商业用途。我们重点介绍了临床前表征靶抗原的方法,包括人类细胞图谱计划、多维细胞培养和针对活化、增殖或应激对照细胞的安全性测试。当细胞疗法针对独特的人类肿瘤抗原时,为临床前毒性研究提供了实用的解决方案,包括可能支持及时批准首次人体临床试验的说明性减轻毒性措施。我们建议在癌症细胞疗法开发的早期,通过创新者和监管机构之间的连续接触来解决创新监管难题,加速患者获得,同时防止不可接受的毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regulating innovation in the early development of cell therapies
Clinical need for paradigm shifts in efficacy and safety is driving the rapid and wide-ranging innovation in cell therapies for cancer beyond existing regulatory frameworks. Critical issues emerging during clinical trials frequently reflect unresolved elements of the regulation of innovation conundrum from earlier stages of development. We address this challenge using a global regulators’ perspective on the preclinical development of cell therapies, as a navigational aid to intended commercial use which maximises the clinical relevance of developmental data. We examine the implications of tumour targeting based on B cell, natural killer cell, conventional and unconventional T cell receptor domains; multiplex approaches; genetic manipulation strategies; and autologous versus allogeneic cell sources. We propose that detailed characterisation of both the cell source and final product is critical to optimising manufacture of individualised autologous or off the shelf allogeneic cell therapies, enabling product consistency to underpin extrapolation of clinical trial data to the expected commercial use. We highlight preclinical approaches to characterising target antigens including the Human Cell Atlas initiative, multi-dimensional cell culture, and safety testing against activated, proliferating or stressed control cells. Practical solutions are provided for preclinical toxicity studies when cell therapies target uniquely human tumour antigens, including illustrative mitigation measures for potential toxicity likely to support timely approval of first-in-human clinical trials. We recommend addressing the regulation of innovation conundrum through serial engagement between innovators and regulators early in the development of cell therapies for cancer, accelerating patient access while safeguarding against unacceptable toxicities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
A rapid method to assess the in vivo multi-functionality of adoptively transferred engineered TCR T cells. Advancements in nuclear imaging using radiolabeled nanobody tracers to support cancer immunotherapy. Regulation of temporal cytokine production by co-stimulation receptors in TCR-T cells is lost in CAR-T cells. Cancer Vaccines: From an immunology perspective Ex Vivo Comparative Immunogenicity Assessment (EVCIA) to Determine Relative Immunogenicity in Chronic Plaque Psoriasis in Participants Receiving Humira® or Undergoing Repeated Switches Between Humira® and AVT02
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1