基于LR-SMOTE和改进随机森林算法的电子元器件信号识别方法

IF 0.3 Q4 ENGINEERING, AEROSPACE SAE International Journal of Aerospace Pub Date : 2023-06-10 DOI:10.4271/01-17-01-0005
B. Lv, Guotao Wang, Shuo Li, Shicheng Wang, X. Liang
{"title":"基于LR-SMOTE和改进随机森林算法的电子元器件信号识别方法","authors":"B. Lv, Guotao Wang, Shuo Li, Shicheng Wang, X. Liang","doi":"10.4271/01-17-01-0005","DOIUrl":null,"url":null,"abstract":"Loose particles are a major problem affecting the performance and safety of\n aerospace electronic components. The current particle impact noise detection\n (PIND) method used in these components suffers from two main issues: data\n collection imbalance and unstable machine-learning-based recognition models that\n lead to redundant signal misclassification and reduced detection accuracy. To\n address these issues, we propose a signal identification method using the\n limited random synthetic minority oversampling technique (LR-SMOTE) for\n unbalanced data processing and an optimized random forest (RF) algorithm to\n detect loose particles. LR-SMOTE expands the generation space beyond the\n original SMOTE oversampling algorithm, generating more representative data for\n underrepresented classes. We then use an RF optimization algorithm based on the\n correlation measure to identify loose particle signals in balanced data. Our\n experimental results demonstrate that the LR-SMOTE algorithm has a better data\n balancing effect than SMOTE, and our optimized RF algorithm achieves an accuracy\n of over 96% for identifying loose particle signals. The proposed method can also\n be popularized in the field of loose particle detection for large-scale sealing\n equipment and other various areas of fault diagnosis based on sound signals.","PeriodicalId":44558,"journal":{"name":"SAE International Journal of Aerospace","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognition Method for Electronic Component Signals Based on LR-SMOTE\\n and Improved Random Forest Algorithm\",\"authors\":\"B. Lv, Guotao Wang, Shuo Li, Shicheng Wang, X. Liang\",\"doi\":\"10.4271/01-17-01-0005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Loose particles are a major problem affecting the performance and safety of\\n aerospace electronic components. The current particle impact noise detection\\n (PIND) method used in these components suffers from two main issues: data\\n collection imbalance and unstable machine-learning-based recognition models that\\n lead to redundant signal misclassification and reduced detection accuracy. To\\n address these issues, we propose a signal identification method using the\\n limited random synthetic minority oversampling technique (LR-SMOTE) for\\n unbalanced data processing and an optimized random forest (RF) algorithm to\\n detect loose particles. LR-SMOTE expands the generation space beyond the\\n original SMOTE oversampling algorithm, generating more representative data for\\n underrepresented classes. We then use an RF optimization algorithm based on the\\n correlation measure to identify loose particle signals in balanced data. Our\\n experimental results demonstrate that the LR-SMOTE algorithm has a better data\\n balancing effect than SMOTE, and our optimized RF algorithm achieves an accuracy\\n of over 96% for identifying loose particle signals. The proposed method can also\\n be popularized in the field of loose particle detection for large-scale sealing\\n equipment and other various areas of fault diagnosis based on sound signals.\",\"PeriodicalId\":44558,\"journal\":{\"name\":\"SAE International Journal of Aerospace\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAE International Journal of Aerospace\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4271/01-17-01-0005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE International Journal of Aerospace","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/01-17-01-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

松散颗粒是影响航空航天电子元件性能和安全的主要问题。目前用于这些部件的粒子碰撞噪声检测(PIND)方法存在两个主要问题:数据收集不平衡和基于机器学习的识别模型不稳定,导致冗余信号误分类和检测精度降低。为了解决这些问题,我们提出了一种使用有限随机合成少数过采样技术(LR-SMOTE)进行非平衡数据处理的信号识别方法,以及一种优化的随机森林(RF)算法来检测松散粒子。LR-SMOTE扩展了原始SMOTE过采样算法的生成空间,为代表性不足的类生成更具代表性的数据。然后,我们使用基于相关度量的射频优化算法来识别平衡数据中的松散粒子信号。实验结果表明,LR-SMOTE算法比SMOTE算法具有更好的数据平衡效果,优化后的RF算法对松散粒子信号的识别准确率达到96%以上。该方法也可推广到大型密封设备的松散颗粒检测以及基于声信号的故障诊断等各个领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognition Method for Electronic Component Signals Based on LR-SMOTE and Improved Random Forest Algorithm
Loose particles are a major problem affecting the performance and safety of aerospace electronic components. The current particle impact noise detection (PIND) method used in these components suffers from two main issues: data collection imbalance and unstable machine-learning-based recognition models that lead to redundant signal misclassification and reduced detection accuracy. To address these issues, we propose a signal identification method using the limited random synthetic minority oversampling technique (LR-SMOTE) for unbalanced data processing and an optimized random forest (RF) algorithm to detect loose particles. LR-SMOTE expands the generation space beyond the original SMOTE oversampling algorithm, generating more representative data for underrepresented classes. We then use an RF optimization algorithm based on the correlation measure to identify loose particle signals in balanced data. Our experimental results demonstrate that the LR-SMOTE algorithm has a better data balancing effect than SMOTE, and our optimized RF algorithm achieves an accuracy of over 96% for identifying loose particle signals. The proposed method can also be popularized in the field of loose particle detection for large-scale sealing equipment and other various areas of fault diagnosis based on sound signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SAE International Journal of Aerospace
SAE International Journal of Aerospace ENGINEERING, AEROSPACE-
CiteScore
0.70
自引率
0.00%
发文量
22
期刊最新文献
Computational Investigation of a Flexible Airframe Taxiing Over an Uneven Runway for Aircraft Vibration Testing Material Recognition Technology of Internal Loose Particles in Sealed Electronic Components Based on Random Forest External Synchronization of Distributed Redundant Flight Control Computers Reviewers Determination of the Heat-Controlled Accumulator Volume for the Two-Phase Thermal Control Systems of Spacecraft
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1