Bo Pan, R. Kang, Xu Zhu, Zhe Yang, Juntao Zhang, Jiang Guo
{"title":"为什么双面研磨时工件的平行度会收敛?","authors":"Bo Pan, R. Kang, Xu Zhu, Zhe Yang, Juntao Zhang, Jiang Guo","doi":"10.1115/1.4057053","DOIUrl":null,"url":null,"abstract":"\n Double-sided lapping (DSL) is a precision process widely used for machining flat workpieces, such as optical windows, wafers, and brake pads owing to its high efficiency and parallelism. However, the mechanism of parallelism error reduced by the DSL process was rarely investigated. Furthermore, the relationship between parallelism and the flatness was not clearly illustrated. To explain why the parallelism of workpieces becomes convergent by the DSL, a theoretical model has been developed in this paper by calculating the parallelism evolution with the consideration of variation contact situations between workpieces and lapping plates for the first time. Moreover, several workpieces, including a slanted one rendering the model close to the actual process, are taken to calculate the parallelism evolution, and the mechanism of the parallelism error reduced by the DSL process is clarified. The calculation result has indicated that the parallelism error was reduced from 100.0 μm to 25.6 μm based on the parallelism evolution model. The experimental results showed that the parallelism improved from 108.6 μm to 28.2 μm, which agreed with the theoretical results well.","PeriodicalId":16299,"journal":{"name":"Journal of Manufacturing Science and Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Why parallelism of workpieces becomes convergent during double-sided lapping?\",\"authors\":\"Bo Pan, R. Kang, Xu Zhu, Zhe Yang, Juntao Zhang, Jiang Guo\",\"doi\":\"10.1115/1.4057053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Double-sided lapping (DSL) is a precision process widely used for machining flat workpieces, such as optical windows, wafers, and brake pads owing to its high efficiency and parallelism. However, the mechanism of parallelism error reduced by the DSL process was rarely investigated. Furthermore, the relationship between parallelism and the flatness was not clearly illustrated. To explain why the parallelism of workpieces becomes convergent by the DSL, a theoretical model has been developed in this paper by calculating the parallelism evolution with the consideration of variation contact situations between workpieces and lapping plates for the first time. Moreover, several workpieces, including a slanted one rendering the model close to the actual process, are taken to calculate the parallelism evolution, and the mechanism of the parallelism error reduced by the DSL process is clarified. The calculation result has indicated that the parallelism error was reduced from 100.0 μm to 25.6 μm based on the parallelism evolution model. The experimental results showed that the parallelism improved from 108.6 μm to 28.2 μm, which agreed with the theoretical results well.\",\"PeriodicalId\":16299,\"journal\":{\"name\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Science and Engineering-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4057053\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Science and Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4057053","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Why parallelism of workpieces becomes convergent during double-sided lapping?
Double-sided lapping (DSL) is a precision process widely used for machining flat workpieces, such as optical windows, wafers, and brake pads owing to its high efficiency and parallelism. However, the mechanism of parallelism error reduced by the DSL process was rarely investigated. Furthermore, the relationship between parallelism and the flatness was not clearly illustrated. To explain why the parallelism of workpieces becomes convergent by the DSL, a theoretical model has been developed in this paper by calculating the parallelism evolution with the consideration of variation contact situations between workpieces and lapping plates for the first time. Moreover, several workpieces, including a slanted one rendering the model close to the actual process, are taken to calculate the parallelism evolution, and the mechanism of the parallelism error reduced by the DSL process is clarified. The calculation result has indicated that the parallelism error was reduced from 100.0 μm to 25.6 μm based on the parallelism evolution model. The experimental results showed that the parallelism improved from 108.6 μm to 28.2 μm, which agreed with the theoretical results well.
期刊介绍:
Areas of interest including, but not limited to: Additive manufacturing; Advanced materials and processing; Assembly; Biomedical manufacturing; Bulk deformation processes (e.g., extrusion, forging, wire drawing, etc.); CAD/CAM/CAE; Computer-integrated manufacturing; Control and automation; Cyber-physical systems in manufacturing; Data science-enhanced manufacturing; Design for manufacturing; Electrical and electrochemical machining; Grinding and abrasive processes; Injection molding and other polymer fabrication processes; Inspection and quality control; Laser processes; Machine tool dynamics; Machining processes; Materials handling; Metrology; Micro- and nano-machining and processing; Modeling and simulation; Nontraditional manufacturing processes; Plant engineering and maintenance; Powder processing; Precision and ultra-precision machining; Process engineering; Process planning; Production systems optimization; Rapid prototyping and solid freeform fabrication; Robotics and flexible tooling; Sensing, monitoring, and diagnostics; Sheet and tube metal forming; Sustainable manufacturing; Tribology in manufacturing; Welding and joining