{"title":"考虑地震和风荷载的单支腿粘阻尼高层建筑的最优参数","authors":"Faisal Nissar Malik, C. Kolay","doi":"10.1002/tal.2003","DOIUrl":null,"url":null,"abstract":"Tall buildings suffer from low inherent damping and high flexibility. Therefore, a core‐outrigger system is often used to stiffen such buildings. A modified form, known as the damped outrigger system, wherein vertically oriented dampers are installed between outriggers and perimeter columns, has been recently developed to supplement the damping. This paper studies the efficacy of a viscously damped outrigger system through dynamic analysis of a 60‐story tall building subjected to nonconcurrent earthquake and wind excitations. Two ground motion sets (100 accelerograms) are used for the former and wind tunnel test data for the latter. Effects of three building parameters, namely, (i) the core‐to‐column stiffness ratio, (ii) the outrigger location, and (iii) the damper size, on the dynamic characteristics and seismic and wind responses are evaluated. Effects of damper nonlinearity on seismic and wind responses are also investigated considering energy‐equivalent nonlinear viscous dampers. Finally, the optimum values of these parameters are determined. For example, the optimum outrigger location is found to be between 0.6H to 0.9H , where H is the height of the building. The results also show that the damped outrigger system significantly outperforms the conventional one for seismic excitation, and it is very effective in reducing the wind‐induced floor accelerations, provided the parameters are chosen appropriately.","PeriodicalId":49470,"journal":{"name":"Structural Design of Tall and Special Buildings","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal parameters for tall buildings with a single viscously damped outrigger considering earthquake and wind loads\",\"authors\":\"Faisal Nissar Malik, C. Kolay\",\"doi\":\"10.1002/tal.2003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tall buildings suffer from low inherent damping and high flexibility. Therefore, a core‐outrigger system is often used to stiffen such buildings. A modified form, known as the damped outrigger system, wherein vertically oriented dampers are installed between outriggers and perimeter columns, has been recently developed to supplement the damping. This paper studies the efficacy of a viscously damped outrigger system through dynamic analysis of a 60‐story tall building subjected to nonconcurrent earthquake and wind excitations. Two ground motion sets (100 accelerograms) are used for the former and wind tunnel test data for the latter. Effects of three building parameters, namely, (i) the core‐to‐column stiffness ratio, (ii) the outrigger location, and (iii) the damper size, on the dynamic characteristics and seismic and wind responses are evaluated. Effects of damper nonlinearity on seismic and wind responses are also investigated considering energy‐equivalent nonlinear viscous dampers. Finally, the optimum values of these parameters are determined. For example, the optimum outrigger location is found to be between 0.6H to 0.9H , where H is the height of the building. The results also show that the damped outrigger system significantly outperforms the conventional one for seismic excitation, and it is very effective in reducing the wind‐induced floor accelerations, provided the parameters are chosen appropriately.\",\"PeriodicalId\":49470,\"journal\":{\"name\":\"Structural Design of Tall and Special Buildings\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Design of Tall and Special Buildings\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/tal.2003\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Design of Tall and Special Buildings","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/tal.2003","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Optimal parameters for tall buildings with a single viscously damped outrigger considering earthquake and wind loads
Tall buildings suffer from low inherent damping and high flexibility. Therefore, a core‐outrigger system is often used to stiffen such buildings. A modified form, known as the damped outrigger system, wherein vertically oriented dampers are installed between outriggers and perimeter columns, has been recently developed to supplement the damping. This paper studies the efficacy of a viscously damped outrigger system through dynamic analysis of a 60‐story tall building subjected to nonconcurrent earthquake and wind excitations. Two ground motion sets (100 accelerograms) are used for the former and wind tunnel test data for the latter. Effects of three building parameters, namely, (i) the core‐to‐column stiffness ratio, (ii) the outrigger location, and (iii) the damper size, on the dynamic characteristics and seismic and wind responses are evaluated. Effects of damper nonlinearity on seismic and wind responses are also investigated considering energy‐equivalent nonlinear viscous dampers. Finally, the optimum values of these parameters are determined. For example, the optimum outrigger location is found to be between 0.6H to 0.9H , where H is the height of the building. The results also show that the damped outrigger system significantly outperforms the conventional one for seismic excitation, and it is very effective in reducing the wind‐induced floor accelerations, provided the parameters are chosen appropriately.
期刊介绍:
The Structural Design of Tall and Special Buildings provides structural engineers and contractors with a detailed written presentation of innovative structural engineering and construction practices for tall and special buildings. It also presents applied research on new materials or analysis methods that can directly benefit structural engineers involved in the design of tall and special buildings. The editor''s policy is to maintain a reasonable balance between papers from design engineers and from research workers so that the Journal will be useful to both groups. The problems in this field and their solutions are international in character and require a knowledge of several traditional disciplines and the Journal will reflect this.
The main subject of the Journal is the structural design and construction of tall and special buildings. The basic definition of a tall building, in the context of the Journal audience, is a structure that is equal to or greater than 50 meters (165 feet) in height, or 14 stories or greater. A special building is one with unique architectural or structural characteristics.
However, manuscripts dealing with chimneys, water towers, silos, cooling towers, and pools will generally not be considered for review. The journal will present papers on new innovative structural systems, materials and methods of analysis.