Rebecca J. Dorsey, Sergio G. Longhitano, Domenico Chiarella
{"title":"意大利南部墨西拿海峡有源共轭中继带的结构和形态","authors":"Rebecca J. Dorsey, Sergio G. Longhitano, Domenico Chiarella","doi":"10.1111/bre.12818","DOIUrl":null,"url":null,"abstract":"<p>Messina Strait is a narrow fault-bounded marine basin that separates the Calabrian peninsula from Sicily in southern Italy. It sits in a seismically active region where normal fault scarps and raised Quaternary marine terraces record ongoing extension driven by southeastward rollback of the Calabrian subduction zone. A review of published studies and new data shows that normal faults in the Messina Strait region define a conjugate relay zone where displacement is transferred along strike from NW-dipping normal faults in the northeast (southern Calabria) to the SE-dipping Messina-Taormina normal fault in the southwest (offshore eastern Sicily). The narrow marine strait is a graben undergoing active subsidence within the relay zone, where pronounced curvature of normal faults results from large strain gradients and clockwise rotations related to fault interactions. Based on regional fault geometries and published age constraints, we infer that normal faults in southern Calabria migrated northwest while normal faults in NE Sicily migrated southeast during the past ca. 2–2.5 Myr. This pattern has resulted in tectonic narrowing of the strait through time by inward migration of facing normal faults and rapid mantle-driven uplift.</p>","PeriodicalId":8712,"journal":{"name":"Basin Research","volume":"36 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure and morphology of an active conjugate relay zone, Messina Strait, southern Italy\",\"authors\":\"Rebecca J. Dorsey, Sergio G. Longhitano, Domenico Chiarella\",\"doi\":\"10.1111/bre.12818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Messina Strait is a narrow fault-bounded marine basin that separates the Calabrian peninsula from Sicily in southern Italy. It sits in a seismically active region where normal fault scarps and raised Quaternary marine terraces record ongoing extension driven by southeastward rollback of the Calabrian subduction zone. A review of published studies and new data shows that normal faults in the Messina Strait region define a conjugate relay zone where displacement is transferred along strike from NW-dipping normal faults in the northeast (southern Calabria) to the SE-dipping Messina-Taormina normal fault in the southwest (offshore eastern Sicily). The narrow marine strait is a graben undergoing active subsidence within the relay zone, where pronounced curvature of normal faults results from large strain gradients and clockwise rotations related to fault interactions. Based on regional fault geometries and published age constraints, we infer that normal faults in southern Calabria migrated northwest while normal faults in NE Sicily migrated southeast during the past ca. 2–2.5 Myr. This pattern has resulted in tectonic narrowing of the strait through time by inward migration of facing normal faults and rapid mantle-driven uplift.</p>\",\"PeriodicalId\":8712,\"journal\":{\"name\":\"Basin Research\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basin Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/bre.12818\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basin Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bre.12818","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Structure and morphology of an active conjugate relay zone, Messina Strait, southern Italy
Messina Strait is a narrow fault-bounded marine basin that separates the Calabrian peninsula from Sicily in southern Italy. It sits in a seismically active region where normal fault scarps and raised Quaternary marine terraces record ongoing extension driven by southeastward rollback of the Calabrian subduction zone. A review of published studies and new data shows that normal faults in the Messina Strait region define a conjugate relay zone where displacement is transferred along strike from NW-dipping normal faults in the northeast (southern Calabria) to the SE-dipping Messina-Taormina normal fault in the southwest (offshore eastern Sicily). The narrow marine strait is a graben undergoing active subsidence within the relay zone, where pronounced curvature of normal faults results from large strain gradients and clockwise rotations related to fault interactions. Based on regional fault geometries and published age constraints, we infer that normal faults in southern Calabria migrated northwest while normal faults in NE Sicily migrated southeast during the past ca. 2–2.5 Myr. This pattern has resulted in tectonic narrowing of the strait through time by inward migration of facing normal faults and rapid mantle-driven uplift.
期刊介绍:
Basin Research is an international journal which aims to publish original, high impact research papers on sedimentary basin systems. We view integrated, interdisciplinary research as being essential for the advancement of the subject area; therefore, we do not seek manuscripts focused purely on sedimentology, structural geology, or geophysics that have a natural home in specialist journals. Rather, we seek manuscripts that treat sedimentary basins as multi-component systems that require a multi-faceted approach to advance our understanding of their development. During deposition and subsidence we are concerned with large-scale geodynamic processes, heat flow, fluid flow, strain distribution, seismic and sequence stratigraphy, modelling, burial and inversion histories. In addition, we view the development of the source area, in terms of drainage networks, climate, erosion, denudation and sediment routing systems as vital to sedimentary basin systems. The underpinning requirement is that a contribution should be of interest to earth scientists of more than one discipline.