等容弛豫时间和正中神经轴突信号的彩色多普勒评价在癌症和慢性线粒体功能障碍相关疾病免疫治疗中评估线粒体功能的方法

S. Pacini, M. Ruggiero
{"title":"等容弛豫时间和正中神经轴突信号的彩色多普勒评价在癌症和慢性线粒体功能障碍相关疾病免疫治疗中评估线粒体功能的方法","authors":"S. Pacini, M. Ruggiero","doi":"10.3844/AJISP.2019.22.32","DOIUrl":null,"url":null,"abstract":"Reactive Oxygen Species (ROS) arising from the disruption of mitochondrial respiration act as endogenous mutagens and tumor promoters. When production of ROS exceeds the capacity of DNA repair mechanisms, random mutations and aneuploidy ensue, thousands of genes become unbalanced and genetic/epigenetic chain reactions lead to progressive aneuploidy with only two outcomes: karyotypes so altered that are not viable or karyotypes of autonomous, immortal, cancer cells. Consistent with the concept that abnormalities of cellular respiration in mitochondria precede DNA alterations in the nucleus, transplant of normal mitochondria suppresses tumorigenesis and metastases in vitro and in vivo. However, the transplant of mitochondria is an experimental procedure that cannot be easily applied to clinical practice. In order to overcome this limitation, we designed a novel formula based on microbial chondroitin sulfate, vitamin D3 and ultrapure phosphatidylcholine, molecules that are known to restore mitochondrial functionality and suppress ROS production. Here we describe how such an approach can be evaluated by color Doppler ultrasonography of the radial artery and measure of the Isovolumetric Relaxation Time (IVRT). In addition, we show for the first time color Doppler signals originating from axons of the median nerve that may be indicative of quantum phenomena at the level of mitochondria. We propose the use of the original ultrasonographic techniques here described for evaluating the effectiveness of substances or strategies aimed at restoring mitochondrial functionality at the macroscopic and quantum levels.","PeriodicalId":88361,"journal":{"name":"American journal of immunology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Color Doppler Evaluation of Isovolumetric Relaxation Time and of Signals Arising from Axons of the Median Nerve as a Means to Evaluate Mitochondrial Functionality in the Context of Immunotherapy of Cancer and Chronic Conditions Associated with Mitochondrial Dysfunction\",\"authors\":\"S. Pacini, M. Ruggiero\",\"doi\":\"10.3844/AJISP.2019.22.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reactive Oxygen Species (ROS) arising from the disruption of mitochondrial respiration act as endogenous mutagens and tumor promoters. When production of ROS exceeds the capacity of DNA repair mechanisms, random mutations and aneuploidy ensue, thousands of genes become unbalanced and genetic/epigenetic chain reactions lead to progressive aneuploidy with only two outcomes: karyotypes so altered that are not viable or karyotypes of autonomous, immortal, cancer cells. Consistent with the concept that abnormalities of cellular respiration in mitochondria precede DNA alterations in the nucleus, transplant of normal mitochondria suppresses tumorigenesis and metastases in vitro and in vivo. However, the transplant of mitochondria is an experimental procedure that cannot be easily applied to clinical practice. In order to overcome this limitation, we designed a novel formula based on microbial chondroitin sulfate, vitamin D3 and ultrapure phosphatidylcholine, molecules that are known to restore mitochondrial functionality and suppress ROS production. Here we describe how such an approach can be evaluated by color Doppler ultrasonography of the radial artery and measure of the Isovolumetric Relaxation Time (IVRT). In addition, we show for the first time color Doppler signals originating from axons of the median nerve that may be indicative of quantum phenomena at the level of mitochondria. We propose the use of the original ultrasonographic techniques here described for evaluating the effectiveness of substances or strategies aimed at restoring mitochondrial functionality at the macroscopic and quantum levels.\",\"PeriodicalId\":88361,\"journal\":{\"name\":\"American journal of immunology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of immunology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/AJISP.2019.22.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/AJISP.2019.22.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

线粒体呼吸中断产生的活性氧(ROS)作为内源性诱变剂和肿瘤启动子。当ROS的产生超过DNA修复机制的能力时,随机突变和非整倍体随之而来,成千上万的基因变得不平衡,遗传/表观遗传连锁反应导致进行性非整倍性,只有两种结果:改变的不可行的核型或自主的、不朽的癌症细胞的核型。与线粒体细胞呼吸异常先于细胞核DNA改变的概念一致,正常线粒体的移植在体外和体内抑制肿瘤发生和转移。然而,线粒体移植是一种实验性程序,不容易应用于临床实践。为了克服这一限制,我们设计了一种基于微生物硫酸软骨素、维生素D3和超纯磷脂酰胆碱的新配方,这些分子已知可以恢复线粒体功能并抑制ROS的产生。在这里,我们描述了如何通过桡动脉的彩色多普勒超声和等容弛豫时间(IVRT)的测量来评估这种方法。此外,我们首次展示了源自正中神经轴突的彩色多普勒信号,该信号可能指示线粒体水平的量子现象。我们建议使用本文描述的原始超声技术来评估旨在在宏观和量子水平上恢复线粒体功能的物质或策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Color Doppler Evaluation of Isovolumetric Relaxation Time and of Signals Arising from Axons of the Median Nerve as a Means to Evaluate Mitochondrial Functionality in the Context of Immunotherapy of Cancer and Chronic Conditions Associated with Mitochondrial Dysfunction
Reactive Oxygen Species (ROS) arising from the disruption of mitochondrial respiration act as endogenous mutagens and tumor promoters. When production of ROS exceeds the capacity of DNA repair mechanisms, random mutations and aneuploidy ensue, thousands of genes become unbalanced and genetic/epigenetic chain reactions lead to progressive aneuploidy with only two outcomes: karyotypes so altered that are not viable or karyotypes of autonomous, immortal, cancer cells. Consistent with the concept that abnormalities of cellular respiration in mitochondria precede DNA alterations in the nucleus, transplant of normal mitochondria suppresses tumorigenesis and metastases in vitro and in vivo. However, the transplant of mitochondria is an experimental procedure that cannot be easily applied to clinical practice. In order to overcome this limitation, we designed a novel formula based on microbial chondroitin sulfate, vitamin D3 and ultrapure phosphatidylcholine, molecules that are known to restore mitochondrial functionality and suppress ROS production. Here we describe how such an approach can be evaluated by color Doppler ultrasonography of the radial artery and measure of the Isovolumetric Relaxation Time (IVRT). In addition, we show for the first time color Doppler signals originating from axons of the median nerve that may be indicative of quantum phenomena at the level of mitochondria. We propose the use of the original ultrasonographic techniques here described for evaluating the effectiveness of substances or strategies aimed at restoring mitochondrial functionality at the macroscopic and quantum levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Immunological Argument for One Health Release of endogenous chondroitin sulfate and heparin as consequence of dysregulated proteolysis in COVID-19 Exploring the Role of Immune Complexes in Essential Hypertension Punicalagin Suppresses Mediators Involved in Labor Onset and Progression in vitro Chronic and Acute Effect of Tramadol Intoxication on Some Immunological Parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1