H. Rostami, R. Mohammadi, S. Asri-Rezaei, A. Tehrani
{"title":"壳聚糖/纳米硒可生物降解膜在大鼠全厚度创面愈合中的应用评价","authors":"H. Rostami, R. Mohammadi, S. Asri-Rezaei, A. Tehrani","doi":"10.22034/IVSA.2018.113760.1135","DOIUrl":null,"url":null,"abstract":"Objective- This study aimed at evaluation of histopathological findings of application of chitosan- nano selenium biodegradable film on full thickness excisional wound healing in rats.Design- Experimental Study Animals- Seventy-two male Wistar rats Procedures- Animals were randomized into six groups of 12 animals each. Group I: Animals with created wounds and no further treatment. Group II: Animals with wounds were dressed with chitosan film only. Group III: Animals with wounds were treated with sodium selenite. Group IV: Animals with wounds were treated with sodium selenium nanoparticles. Group V: Animals with wounds were dressed with chitosan/ sodium selenite film. Group VI: Animals with wounds were dressed with chitosan/nano selenium film.Results- There were significant differences in comparisons of group VI and other groups, particularly in terms of cellular infiltration and neovascularization. During the study period, scores for neovascularization was significantly higher in group VI rats than other groups (P <0.05). Polymorphonuclear (PMN) and mononuclear (MNC) cell count and fibroblast cell proliferation in group VI were significantly higher than those of other experimental groups (P <0.05) Conclusion and Clinical Relevance- Chitosan/nano selenium biodegradable film resulted in significant improvement in histopathological indices in full-thickness wound healing. Thus, from this study it could be concluded that chitosan/nano selenium biodegradable film have a reproducible wound healing potential and hereby justifies its use in practice.","PeriodicalId":14554,"journal":{"name":"Iranian Journal of Veterinary Surgery","volume":"13 1","pages":"14-22"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Evaluation of Application of Chitosan/Nano Selenium Biodegradable Film on Full Thickness Excisional Wound Healing in Rats\",\"authors\":\"H. Rostami, R. Mohammadi, S. Asri-Rezaei, A. Tehrani\",\"doi\":\"10.22034/IVSA.2018.113760.1135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective- This study aimed at evaluation of histopathological findings of application of chitosan- nano selenium biodegradable film on full thickness excisional wound healing in rats.Design- Experimental Study Animals- Seventy-two male Wistar rats Procedures- Animals were randomized into six groups of 12 animals each. Group I: Animals with created wounds and no further treatment. Group II: Animals with wounds were dressed with chitosan film only. Group III: Animals with wounds were treated with sodium selenite. Group IV: Animals with wounds were treated with sodium selenium nanoparticles. Group V: Animals with wounds were dressed with chitosan/ sodium selenite film. Group VI: Animals with wounds were dressed with chitosan/nano selenium film.Results- There were significant differences in comparisons of group VI and other groups, particularly in terms of cellular infiltration and neovascularization. During the study period, scores for neovascularization was significantly higher in group VI rats than other groups (P <0.05). Polymorphonuclear (PMN) and mononuclear (MNC) cell count and fibroblast cell proliferation in group VI were significantly higher than those of other experimental groups (P <0.05) Conclusion and Clinical Relevance- Chitosan/nano selenium biodegradable film resulted in significant improvement in histopathological indices in full-thickness wound healing. Thus, from this study it could be concluded that chitosan/nano selenium biodegradable film have a reproducible wound healing potential and hereby justifies its use in practice.\",\"PeriodicalId\":14554,\"journal\":{\"name\":\"Iranian Journal of Veterinary Surgery\",\"volume\":\"13 1\",\"pages\":\"14-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Veterinary Surgery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/IVSA.2018.113760.1135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Veterinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Veterinary Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/IVSA.2018.113760.1135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Veterinary","Score":null,"Total":0}
Evaluation of Application of Chitosan/Nano Selenium Biodegradable Film on Full Thickness Excisional Wound Healing in Rats
Objective- This study aimed at evaluation of histopathological findings of application of chitosan- nano selenium biodegradable film on full thickness excisional wound healing in rats.Design- Experimental Study Animals- Seventy-two male Wistar rats Procedures- Animals were randomized into six groups of 12 animals each. Group I: Animals with created wounds and no further treatment. Group II: Animals with wounds were dressed with chitosan film only. Group III: Animals with wounds were treated with sodium selenite. Group IV: Animals with wounds were treated with sodium selenium nanoparticles. Group V: Animals with wounds were dressed with chitosan/ sodium selenite film. Group VI: Animals with wounds were dressed with chitosan/nano selenium film.Results- There were significant differences in comparisons of group VI and other groups, particularly in terms of cellular infiltration and neovascularization. During the study period, scores for neovascularization was significantly higher in group VI rats than other groups (P <0.05). Polymorphonuclear (PMN) and mononuclear (MNC) cell count and fibroblast cell proliferation in group VI were significantly higher than those of other experimental groups (P <0.05) Conclusion and Clinical Relevance- Chitosan/nano selenium biodegradable film resulted in significant improvement in histopathological indices in full-thickness wound healing. Thus, from this study it could be concluded that chitosan/nano selenium biodegradable film have a reproducible wound healing potential and hereby justifies its use in practice.