有效性证据不排除系统偏差:法噪声与跨文化不变性述评

IF 6.5 2区 社会学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Sociological Methods & Research Pub Date : 2021-06-16 DOI:10.1177/00491241221091756
R. Fischer, J. Karl, Johnny Fontaine, Y. Poortinga
{"title":"有效性证据不排除系统偏差:法噪声与跨文化不变性述评","authors":"R. Fischer, J. Karl, Johnny Fontaine, Y. Poortinga","doi":"10.1177/00491241221091756","DOIUrl":null,"url":null,"abstract":"We comment on the argument by Welzel, Brunkert, Kruse and Inglehart (2021) that theoretically expected associations in nomological networks should take priority over invariance tests in cross-national research. We agree that narrow application of individual tools, such as multi-group confirmatory factor analysis with data that violates the assumptions of these techniques, can be misleading. However, findings that fit expectations of nomological networks may not be free of bias. We present supporting evidence of systematic bias affecting nomological network relationships from a) previous research on intelligence and response styles, b) two simulation studies, and c) data on the choice index from the World Value Survey (WVS). Our main point is that nomological network analysis by itself is insufficient to rule out systematic bias in data. We point out how a thoughtful exploration of sources of biases in cross-national data can contribute to stronger theory development.","PeriodicalId":21849,"journal":{"name":"Sociological Methods & Research","volume":"52 1","pages":"1420 - 1437"},"PeriodicalIF":6.5000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Evidence of Validity Does not Rule out Systematic Bias: A Commentary on Nomological Noise and Cross-Cultural Invariance\",\"authors\":\"R. Fischer, J. Karl, Johnny Fontaine, Y. Poortinga\",\"doi\":\"10.1177/00491241221091756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We comment on the argument by Welzel, Brunkert, Kruse and Inglehart (2021) that theoretically expected associations in nomological networks should take priority over invariance tests in cross-national research. We agree that narrow application of individual tools, such as multi-group confirmatory factor analysis with data that violates the assumptions of these techniques, can be misleading. However, findings that fit expectations of nomological networks may not be free of bias. We present supporting evidence of systematic bias affecting nomological network relationships from a) previous research on intelligence and response styles, b) two simulation studies, and c) data on the choice index from the World Value Survey (WVS). Our main point is that nomological network analysis by itself is insufficient to rule out systematic bias in data. We point out how a thoughtful exploration of sources of biases in cross-national data can contribute to stronger theory development.\",\"PeriodicalId\":21849,\"journal\":{\"name\":\"Sociological Methods & Research\",\"volume\":\"52 1\",\"pages\":\"1420 - 1437\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sociological Methods & Research\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1177/00491241221091756\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL SCIENCES, MATHEMATICAL METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sociological Methods & Research","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/00491241221091756","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 8

摘要

我们评论了Welzel、Brunkert、Kruse和Inglehart(2021)的论点,即在跨国研究中,法理网络中的理论预期关联应优先于不变性测试。我们同意,狭隘地应用个别工具,如多组验证性因素分析,其数据违反了这些技术的假设,可能会产生误导。然而,符合法理网络预期的研究结果可能并非没有偏见。我们提供了系统偏见影响法治网络关系的支持证据,这些证据来自a)先前关于智力和反应风格的研究,b)两项模拟研究,以及c)世界价值调查(WVS)中关于选择指数的数据。我们的主要观点是,法理网络分析本身不足以排除数据中的系统偏差。我们指出,对跨国数据中的偏见来源进行深思熟虑的探索,可以有助于加强理论发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evidence of Validity Does not Rule out Systematic Bias: A Commentary on Nomological Noise and Cross-Cultural Invariance
We comment on the argument by Welzel, Brunkert, Kruse and Inglehart (2021) that theoretically expected associations in nomological networks should take priority over invariance tests in cross-national research. We agree that narrow application of individual tools, such as multi-group confirmatory factor analysis with data that violates the assumptions of these techniques, can be misleading. However, findings that fit expectations of nomological networks may not be free of bias. We present supporting evidence of systematic bias affecting nomological network relationships from a) previous research on intelligence and response styles, b) two simulation studies, and c) data on the choice index from the World Value Survey (WVS). Our main point is that nomological network analysis by itself is insufficient to rule out systematic bias in data. We point out how a thoughtful exploration of sources of biases in cross-national data can contribute to stronger theory development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.30
自引率
3.20%
发文量
40
期刊介绍: Sociological Methods & Research is a quarterly journal devoted to sociology as a cumulative empirical science. The objectives of SMR are multiple, but emphasis is placed on articles that advance the understanding of the field through systematic presentations that clarify methodological problems and assist in ordering the known facts in an area. Review articles will be published, particularly those that emphasize a critical analysis of the status of the arts, but original presentations that are broadly based and provide new research will also be published. Intrinsically, SMR is viewed as substantive journal but one that is highly focused on the assessment of the scientific status of sociology. The scope is broad and flexible, and authors are invited to correspond with the editors about the appropriateness of their articles.
期刊最新文献
Sharing Big Video Data: Ethics, Methods, and Technology Dynamics of Health Expectancy: An Introduction to the Multiple Multistate Method (MMM) Seeded Topic Models in Digital Archives: Analyzing Interpretations of Immigration in Swedish Newspapers, 1945–2019 A Primer on Deep Learning for Causal Inference Untapped Potential: Designed Digital Trace Data in Online Survey Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1