在具体的人工智能体中使用习惯化作为一种简单而基本的学习机制

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Adaptive Behavior Pub Date : 2022-10-10 DOI:10.1177/10597123221116183
Tristan Gillard, J. Fix, A. Dutech
{"title":"在具体的人工智能体中使用习惯化作为一种简单而基本的学习机制","authors":"Tristan Gillard, J. Fix, A. Dutech","doi":"10.1177/10597123221116183","DOIUrl":null,"url":null,"abstract":"Habituation, a non-associative learning widely observed across phylogeny, is fundamental for adaptation and, thus, survival of living organisms. This paper investigates the main characteristics of habituation in order to present three new computational models inspired by habituation. We develop these models as part of the Iterant Deformable Sensorimotor Medium (IDSM), a recently developed abstract model of behavior formation. The characteristics of these models are studied and analyzed. Our long-term objective is to research new unsupervised learning mechanisms for artificial learning agents.","PeriodicalId":55552,"journal":{"name":"Adaptive Behavior","volume":"31 1","pages":"299 - 321"},"PeriodicalIF":1.2000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using habituation as a simple and fundamental learning mechanism in an embodied artificial agent\",\"authors\":\"Tristan Gillard, J. Fix, A. Dutech\",\"doi\":\"10.1177/10597123221116183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Habituation, a non-associative learning widely observed across phylogeny, is fundamental for adaptation and, thus, survival of living organisms. This paper investigates the main characteristics of habituation in order to present three new computational models inspired by habituation. We develop these models as part of the Iterant Deformable Sensorimotor Medium (IDSM), a recently developed abstract model of behavior formation. The characteristics of these models are studied and analyzed. Our long-term objective is to research new unsupervised learning mechanisms for artificial learning agents.\",\"PeriodicalId\":55552,\"journal\":{\"name\":\"Adaptive Behavior\",\"volume\":\"31 1\",\"pages\":\"299 - 321\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adaptive Behavior\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/10597123221116183\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adaptive Behavior","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10597123221116183","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

习惯化是一种在系统发育学中广泛观察到的非联想学习,是生物体适应和生存的基础。本文研究了习惯化的主要特征,以期提出三个受习惯化启发的新的计算模型。我们将这些模型作为迭代变形感觉运动介质(IDSM)的一部分进行开发,IDSM是一种最近开发的行为形成抽象模型。对这些模型的特点进行了研究和分析。我们的长期目标是为人工学习代理研究新的无监督学习机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using habituation as a simple and fundamental learning mechanism in an embodied artificial agent
Habituation, a non-associative learning widely observed across phylogeny, is fundamental for adaptation and, thus, survival of living organisms. This paper investigates the main characteristics of habituation in order to present three new computational models inspired by habituation. We develop these models as part of the Iterant Deformable Sensorimotor Medium (IDSM), a recently developed abstract model of behavior formation. The characteristics of these models are studied and analyzed. Our long-term objective is to research new unsupervised learning mechanisms for artificial learning agents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Adaptive Behavior
Adaptive Behavior 工程技术-计算机:人工智能
CiteScore
4.30
自引率
18.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: _Adaptive Behavior_ publishes articles on adaptive behaviour in living organisms and autonomous artificial systems. The official journal of the _International Society of Adaptive Behavior_, _Adaptive Behavior_, addresses topics such as perception and motor control, embodied cognition, learning and evolution, neural mechanisms, artificial intelligence, behavioral sequences, motivation and emotion, characterization of environments, decision making, collective and social behavior, navigation, foraging, communication and signalling. Print ISSN: 1059-7123
期刊最新文献
Environmental complexity, cognition, and plant stress physiology A model of how hierarchical representations constructed in the hippocampus are used to navigate through space Mechanical Problem Solving in Goffin’s Cockatoos—Towards Modeling Complex Behavior Coupling First-Person Cognitive Research With Neurophilosophy and Enactivism: An Outline of Arguments The origin and function of external representations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1