Renee Noortman, P. Lovei, M. Funk, E. Deckers, S. Wensveen, Berry Eggen
{"title":"打破数据驱动设计:扩大和扩大临床环境","authors":"Renee Noortman, P. Lovei, M. Funk, E. Deckers, S. Wensveen, Berry Eggen","doi":"10.1017/S0890060421000433","DOIUrl":null,"url":null,"abstract":"Abstract Data-enabled design (DED) is a promising new methodology for designing with users from within their own context in an iterative and hands-on fashion. However, the agile and flexible qualities of the methodology do not directly translate to every context. In this article, we reflect on the design process of an intelligent ecosystem, called ORBIT, and a proposed evaluative study planned with it. This was part of a DED project in collaboration with a medical hospital to study the post-operative behavior in the (remote) context of bariatric patients. The design and preparation of this project and the process towards an eventual study rejection from the medical ethical committee (METC) provide rich insights into (1) what it means to conduct DED research in a clinical context, and (2) where the boundaries of the method might lie in this specific application area. We highlight insights from carefully designing the substantial infrastructure for the study, and how different aspects of DED translated less easily to the clinical context. We analyze the proposed study setup through the lenses of several modifications we made to DED and further reflect on how to expand and scale up the methodology and adapt the process for the clinical context.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Breaking up data-enabled design: expanding and scaling up for the clinical context\",\"authors\":\"Renee Noortman, P. Lovei, M. Funk, E. Deckers, S. Wensveen, Berry Eggen\",\"doi\":\"10.1017/S0890060421000433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Data-enabled design (DED) is a promising new methodology for designing with users from within their own context in an iterative and hands-on fashion. However, the agile and flexible qualities of the methodology do not directly translate to every context. In this article, we reflect on the design process of an intelligent ecosystem, called ORBIT, and a proposed evaluative study planned with it. This was part of a DED project in collaboration with a medical hospital to study the post-operative behavior in the (remote) context of bariatric patients. The design and preparation of this project and the process towards an eventual study rejection from the medical ethical committee (METC) provide rich insights into (1) what it means to conduct DED research in a clinical context, and (2) where the boundaries of the method might lie in this specific application area. We highlight insights from carefully designing the substantial infrastructure for the study, and how different aspects of DED translated less easily to the clinical context. We analyze the proposed study setup through the lenses of several modifications we made to DED and further reflect on how to expand and scale up the methodology and adapt the process for the clinical context.\",\"PeriodicalId\":50951,\"journal\":{\"name\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0890060421000433\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060421000433","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Breaking up data-enabled design: expanding and scaling up for the clinical context
Abstract Data-enabled design (DED) is a promising new methodology for designing with users from within their own context in an iterative and hands-on fashion. However, the agile and flexible qualities of the methodology do not directly translate to every context. In this article, we reflect on the design process of an intelligent ecosystem, called ORBIT, and a proposed evaluative study planned with it. This was part of a DED project in collaboration with a medical hospital to study the post-operative behavior in the (remote) context of bariatric patients. The design and preparation of this project and the process towards an eventual study rejection from the medical ethical committee (METC) provide rich insights into (1) what it means to conduct DED research in a clinical context, and (2) where the boundaries of the method might lie in this specific application area. We highlight insights from carefully designing the substantial infrastructure for the study, and how different aspects of DED translated less easily to the clinical context. We analyze the proposed study setup through the lenses of several modifications we made to DED and further reflect on how to expand and scale up the methodology and adapt the process for the clinical context.
期刊介绍:
The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.