干湿腐蚀试验后,A1010、HPS和耐候钢面板上的akagansamuite、针铁矿和磁铁矿的深度剖面

IF 1.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Corrosion Engineering, Science and Technology Pub Date : 2023-09-07 DOI:10.1080/1478422X.2023.2247666
Jerzy A. Sawicki
{"title":"干湿腐蚀试验后,A1010、HPS和耐候钢面板上的akagansamuite、针铁矿和磁铁矿的深度剖面","authors":"Jerzy A. Sawicki","doi":"10.1080/1478422X.2023.2247666","DOIUrl":null,"url":null,"abstract":"ABSTRACT The panels of high chromium steel (A1010), high-performance steel (HPS 70W) and weathering steel (WS) were exposed to accelerated salt-spray corrosion test for 1 week and to less aggressive test for additional 13 weeks. After the tests, the corrosion products formed were extracted layer after layer and examined as a function of their depth with Mössbauer transmission spectroscopy. In the case of A1010 steel, the amounts of goethite (α-FeOOH) and akaganéite (β-FeOOH) were almost equal along the depth of the corroded layer up to ∼20 μm. The rust layers on HPS and WS panels were much thicker, respectively up to ∼0.6 mm and ∼1 mm, poorly adherent and contained mostly akaganéite near the metal–rust interface, α-FeOOH increasingly further away, and – after long exposure – also up to 20% Fe as maghemite (γ-Fe2O3). Formation of β-FeOOH near the interface was promoted by chloride concentrated by spray-dry cycles. The microstructure and depth profiles of identified species, and especially the role of β-FeOOH, are discussed.","PeriodicalId":10711,"journal":{"name":"Corrosion Engineering, Science and Technology","volume":"58 1","pages":"687 - 695"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Depth profiles of akaganéite, goethite and maghemite on A1010, HPS and weathering steel panels after wet-dry corrosion tests\",\"authors\":\"Jerzy A. Sawicki\",\"doi\":\"10.1080/1478422X.2023.2247666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The panels of high chromium steel (A1010), high-performance steel (HPS 70W) and weathering steel (WS) were exposed to accelerated salt-spray corrosion test for 1 week and to less aggressive test for additional 13 weeks. After the tests, the corrosion products formed were extracted layer after layer and examined as a function of their depth with Mössbauer transmission spectroscopy. In the case of A1010 steel, the amounts of goethite (α-FeOOH) and akaganéite (β-FeOOH) were almost equal along the depth of the corroded layer up to ∼20 μm. The rust layers on HPS and WS panels were much thicker, respectively up to ∼0.6 mm and ∼1 mm, poorly adherent and contained mostly akaganéite near the metal–rust interface, α-FeOOH increasingly further away, and – after long exposure – also up to 20% Fe as maghemite (γ-Fe2O3). Formation of β-FeOOH near the interface was promoted by chloride concentrated by spray-dry cycles. The microstructure and depth profiles of identified species, and especially the role of β-FeOOH, are discussed.\",\"PeriodicalId\":10711,\"journal\":{\"name\":\"Corrosion Engineering, Science and Technology\",\"volume\":\"58 1\",\"pages\":\"687 - 695\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Engineering, Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/1478422X.2023.2247666\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Engineering, Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/1478422X.2023.2247666","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对高铬钢(A1010)、高性能钢(HPS 70W)和耐候钢(WS)的面板进行了1周的加速盐雾腐蚀试验,另外进行了13周的低腐蚀性试验。试验结束后,将形成的腐蚀产物逐层提取,并用Mössbauer透射光谱检测其深度的函数。在A1010钢中,沿腐蚀层深度(~ 20 μm),针铁矿(α-FeOOH)和阿卡甘酸盐(β-FeOOH)的含量几乎相等。HPS和WS面板上的锈层要厚得多,分别高达~ 0.6 mm和~ 1 mm,附着性差,在金属-锈界面附近主要含有akaganacimite, α-FeOOH越来越远,并且-经过长时间暴露-也高达20%的铁为磁赤铁矿(γ-Fe2O3)。喷干循环富集的氯化物促进了界面附近β-FeOOH的形成。讨论了已鉴定物种的微观结构和深度分布,特别是β-FeOOH的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Depth profiles of akaganéite, goethite and maghemite on A1010, HPS and weathering steel panels after wet-dry corrosion tests
ABSTRACT The panels of high chromium steel (A1010), high-performance steel (HPS 70W) and weathering steel (WS) were exposed to accelerated salt-spray corrosion test for 1 week and to less aggressive test for additional 13 weeks. After the tests, the corrosion products formed were extracted layer after layer and examined as a function of their depth with Mössbauer transmission spectroscopy. In the case of A1010 steel, the amounts of goethite (α-FeOOH) and akaganéite (β-FeOOH) were almost equal along the depth of the corroded layer up to ∼20 μm. The rust layers on HPS and WS panels were much thicker, respectively up to ∼0.6 mm and ∼1 mm, poorly adherent and contained mostly akaganéite near the metal–rust interface, α-FeOOH increasingly further away, and – after long exposure – also up to 20% Fe as maghemite (γ-Fe2O3). Formation of β-FeOOH near the interface was promoted by chloride concentrated by spray-dry cycles. The microstructure and depth profiles of identified species, and especially the role of β-FeOOH, are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Corrosion Engineering, Science and Technology
Corrosion Engineering, Science and Technology 工程技术-材料科学:综合
CiteScore
3.20
自引率
5.60%
发文量
58
审稿时长
3.4 months
期刊介绍: Corrosion Engineering, Science and Technology provides broad international coverage of research and practice in corrosion processes and corrosion control. Peer-reviewed contributions address all aspects of corrosion engineering and corrosion science; there is strong emphasis on effective design and materials selection to combat corrosion and the journal carries failure case studies to further knowledge in these areas.
期刊最新文献
Vibratory polishing effects on passivity of 304L stainless steel surfaces Inhibition effect of nano-silica synergistic corrosion inhibitor on 110SSsteel in ultra-high temperature organic acidic environment An overview of progresses and challenges of electrochemically integrated multi-electrode arrays for probing localised corrosion in complex environmental conditions Effect of refrigerant absorbent combinations in the corrosion resistance of copper as structural material in absorption refrigeration systems (ARS) Cavitation erosion and corrosion-cavitation synergism behaviour of CoCrFeNiMnTi x high entropy alloy coatings prepared by laser cladding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1