Navpreet Kaur, S. Zaheer, Preeti Sharma, Vaishali Rohilla, S. Ranga
{"title":"纤维化癌间质在直肠癌中的作用:免疫形态学评估","authors":"Navpreet Kaur, S. Zaheer, Preeti Sharma, Vaishali Rohilla, S. Ranga","doi":"10.4103/ccij.ccij_3_21","DOIUrl":null,"url":null,"abstract":"Background: The aim of the study is to evaluate the role of fibrotic cancer stromal response and tumor budding in ectal adenocarcinoma development and progression. Materials and Methods: Fibrotic cancer stroma was classified into three distinct histological categories, i.e. mature, intermediate, and immature. The number of tumor-budding foci was counted in the low-power field (×10), and 0–5, 5–9 and ≥10 tumor buds were scored as I, II, and III, respectively. All histological and immunohistochemical assessments were made at the invasive front of the tumor. The distribution of T lymphocytes and myofibroblasts was assessed by immunohistochemical reactivity for the cluster of differentiation 3 and anti-smooth muscle antibody actin, respectively. Results: Among 25 cases of rectal carcinoma, 60% (15 cases) of patients had mature fibrotic cancer stroma, whereas 28% (7 cases) of patients had intermediate stroma and 12% (3 cases) of patients had immature stroma. The cancer-specific 5-year survival rate in the groups with mature stroma, intermediate stroma, and immature stroma was 53.34%, 42.8%, and 33.34%, respectively. There was a statistically significant correlation between the category of fibrotic cancer stroma and the tumor budding. Further, on immunohistochemical analysis and counting, the average number of T-cells was 302/400 μm diameter field in the region of mature fibrotic stroma, in comparison with 197/400 μm and 92/400 μm in the intermediate and immature fibrotic stroma, respectively (unpaired t-test with P < 0.05). Myofibroblasts were observed in 20% of tumors with mature fibrotic stroma compared with 65% in the intermediate fibrotic stroma and 100% of the tumors with immature fibrotic cancer stroma. Conclusions: The histological classification of fibrotic cancer stroma highlights the role of the stromal response with respect to host immune reaction and behavior in rectal adenocarcinoma and acts as a useful tool for predicting patient prognosis and outcome.","PeriodicalId":44457,"journal":{"name":"Clinical Cancer Investigation Journal","volume":"10 1","pages":"289 - 293"},"PeriodicalIF":0.1000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Role of fibrotic cancer stroma in rectal carcinoma: An immunomorphological assessment\",\"authors\":\"Navpreet Kaur, S. Zaheer, Preeti Sharma, Vaishali Rohilla, S. Ranga\",\"doi\":\"10.4103/ccij.ccij_3_21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The aim of the study is to evaluate the role of fibrotic cancer stromal response and tumor budding in ectal adenocarcinoma development and progression. Materials and Methods: Fibrotic cancer stroma was classified into three distinct histological categories, i.e. mature, intermediate, and immature. The number of tumor-budding foci was counted in the low-power field (×10), and 0–5, 5–9 and ≥10 tumor buds were scored as I, II, and III, respectively. All histological and immunohistochemical assessments were made at the invasive front of the tumor. The distribution of T lymphocytes and myofibroblasts was assessed by immunohistochemical reactivity for the cluster of differentiation 3 and anti-smooth muscle antibody actin, respectively. Results: Among 25 cases of rectal carcinoma, 60% (15 cases) of patients had mature fibrotic cancer stroma, whereas 28% (7 cases) of patients had intermediate stroma and 12% (3 cases) of patients had immature stroma. The cancer-specific 5-year survival rate in the groups with mature stroma, intermediate stroma, and immature stroma was 53.34%, 42.8%, and 33.34%, respectively. There was a statistically significant correlation between the category of fibrotic cancer stroma and the tumor budding. Further, on immunohistochemical analysis and counting, the average number of T-cells was 302/400 μm diameter field in the region of mature fibrotic stroma, in comparison with 197/400 μm and 92/400 μm in the intermediate and immature fibrotic stroma, respectively (unpaired t-test with P < 0.05). Myofibroblasts were observed in 20% of tumors with mature fibrotic stroma compared with 65% in the intermediate fibrotic stroma and 100% of the tumors with immature fibrotic cancer stroma. Conclusions: The histological classification of fibrotic cancer stroma highlights the role of the stromal response with respect to host immune reaction and behavior in rectal adenocarcinoma and acts as a useful tool for predicting patient prognosis and outcome.\",\"PeriodicalId\":44457,\"journal\":{\"name\":\"Clinical Cancer Investigation Journal\",\"volume\":\"10 1\",\"pages\":\"289 - 293\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Cancer Investigation Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/ccij.ccij_3_21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Cancer Investigation Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/ccij.ccij_3_21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Role of fibrotic cancer stroma in rectal carcinoma: An immunomorphological assessment
Background: The aim of the study is to evaluate the role of fibrotic cancer stromal response and tumor budding in ectal adenocarcinoma development and progression. Materials and Methods: Fibrotic cancer stroma was classified into three distinct histological categories, i.e. mature, intermediate, and immature. The number of tumor-budding foci was counted in the low-power field (×10), and 0–5, 5–9 and ≥10 tumor buds were scored as I, II, and III, respectively. All histological and immunohistochemical assessments were made at the invasive front of the tumor. The distribution of T lymphocytes and myofibroblasts was assessed by immunohistochemical reactivity for the cluster of differentiation 3 and anti-smooth muscle antibody actin, respectively. Results: Among 25 cases of rectal carcinoma, 60% (15 cases) of patients had mature fibrotic cancer stroma, whereas 28% (7 cases) of patients had intermediate stroma and 12% (3 cases) of patients had immature stroma. The cancer-specific 5-year survival rate in the groups with mature stroma, intermediate stroma, and immature stroma was 53.34%, 42.8%, and 33.34%, respectively. There was a statistically significant correlation between the category of fibrotic cancer stroma and the tumor budding. Further, on immunohistochemical analysis and counting, the average number of T-cells was 302/400 μm diameter field in the region of mature fibrotic stroma, in comparison with 197/400 μm and 92/400 μm in the intermediate and immature fibrotic stroma, respectively (unpaired t-test with P < 0.05). Myofibroblasts were observed in 20% of tumors with mature fibrotic stroma compared with 65% in the intermediate fibrotic stroma and 100% of the tumors with immature fibrotic cancer stroma. Conclusions: The histological classification of fibrotic cancer stroma highlights the role of the stromal response with respect to host immune reaction and behavior in rectal adenocarcinoma and acts as a useful tool for predicting patient prognosis and outcome.