{"title":"混合交通条件下基于探针的隔离交叉口需求响应信号控制","authors":"Himabindu Maripini , Lelitha Vanajakshi , Bhargava Rama Chilukuri","doi":"10.1080/19427867.2022.2164613","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents a model-based demand-responsive traffic control system for mixed traffic conditions using sample travel time data. The model incorporates mixed traffic characteristics such as heterogeneity, limited lane discipline of varied vehicle types, and spatio-temporal traffic dynamics across the width of the road. The methodology includes optimization of intersection performance by accommodating the varying traffic demand through signal timing variables. On validation, the model yielded reliable queue estimates within a close proximity of the actual, ranging from 20 to 40 meters. Upon optimization, the proposed model reduced total intersection delay by 15.42% on an average across 14 cycles, for near-saturated traffic conditions. The optimal green splits are found to be responsive to the varying traffic demand. The proposed system is simple and can be easily implemented in the mixed traffic conditions.</p></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"16 2","pages":"Pages 117-130"},"PeriodicalIF":3.3000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A probe-based demand responsive signal control for isolated intersections under mixed traffic conditions\",\"authors\":\"Himabindu Maripini , Lelitha Vanajakshi , Bhargava Rama Chilukuri\",\"doi\":\"10.1080/19427867.2022.2164613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper presents a model-based demand-responsive traffic control system for mixed traffic conditions using sample travel time data. The model incorporates mixed traffic characteristics such as heterogeneity, limited lane discipline of varied vehicle types, and spatio-temporal traffic dynamics across the width of the road. The methodology includes optimization of intersection performance by accommodating the varying traffic demand through signal timing variables. On validation, the model yielded reliable queue estimates within a close proximity of the actual, ranging from 20 to 40 meters. Upon optimization, the proposed model reduced total intersection delay by 15.42% on an average across 14 cycles, for near-saturated traffic conditions. The optimal green splits are found to be responsive to the varying traffic demand. The proposed system is simple and can be easily implemented in the mixed traffic conditions.</p></div>\",\"PeriodicalId\":48974,\"journal\":{\"name\":\"Transportation Letters-The International Journal of Transportation Research\",\"volume\":\"16 2\",\"pages\":\"Pages 117-130\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Letters-The International Journal of Transportation Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1942786723000498\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786723000498","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
A probe-based demand responsive signal control for isolated intersections under mixed traffic conditions
The paper presents a model-based demand-responsive traffic control system for mixed traffic conditions using sample travel time data. The model incorporates mixed traffic characteristics such as heterogeneity, limited lane discipline of varied vehicle types, and spatio-temporal traffic dynamics across the width of the road. The methodology includes optimization of intersection performance by accommodating the varying traffic demand through signal timing variables. On validation, the model yielded reliable queue estimates within a close proximity of the actual, ranging from 20 to 40 meters. Upon optimization, the proposed model reduced total intersection delay by 15.42% on an average across 14 cycles, for near-saturated traffic conditions. The optimal green splits are found to be responsive to the varying traffic demand. The proposed system is simple and can be easily implemented in the mixed traffic conditions.
期刊介绍:
Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research.
The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.