根据冷却剂的密度和润湿效果预测冷却剂的润滑性能

IF 0.4 Q4 METALLURGY & METALLURGICAL ENGINEERING Obrabotka Metallov-Metal Working and Material Science Pub Date : 2023-06-13 DOI:10.17212/1994-6309-2023-25.2-6-16
A. Kisel’, V. Churankin
{"title":"根据冷却剂的密度和润湿效果预测冷却剂的润滑性能","authors":"A. Kisel’, V. Churankin","doi":"10.17212/1994-6309-2023-25.2-6-16","DOIUrl":null,"url":null,"abstract":"Introduction. The processes occurring in the cutting zone contribute to the rapid wear of the cutting tool and a decrease in the quality of the workpiece. It is possible to reduce the impact of negative factors during metal cutting through a rational choice of coolant. The aim of the work is to develop a methodology for the accelerated assessment of the coolant lubricating properties. Methods. Experimental studies of the lubricating effect of seven different grades of coolant, during friction of a T15K6 (15% TiC–79% WC–6% Co) hard alloy pad and a rotating roller made of carbon structural Steel 45 (0.45% C) are presented. As a parameter of coolant efficiency in terms of lubricating effect, paper proposes an efficiency coefficient Kc, which is equal to the ratio between the friction coefficient that occurs when using coolant and the friction coefficient during friction without coolant. The lower the coefficient Kc, the more effective this coolant is in terms of lubricating effect. Results. Empirical dependences of the coefficient Kc on the coolant density ρ and the limiting wetting angle Θ (Kc = f(ρ;Θ)) are established. Since the low significance of the parameter ρ is established, the formula for the dependence of the Kc only on the limiting wetting angle Θ (Kc = f(Θ)) is established in the work. It is established that the dependence formula (Kc = f(Θ) provides the highest accuracy of calculations. Discussion. After evaluating the research results presented in this paper, the following conclusions are made: 1) the paper establishes the influence of the coolant density and the limiting wetting angle on the coolant efficiency coefficient for the lubricating effect determined for the friction between a roller made of Steel 45 and a pad made of T15K6 alloy: Kc = f(ρ;Θ) and Kc = f(Θ); 2) the greatest accuracy of calculations from 2.75 to 15% is provided by the formula for the dependence Kc = f(Θ); 3) the dependence Kc = f(Θ)is proposed to be used for the method for the accelerated assessment of the coolant lubricating properties during friction of a pad made of T15K6 alloy and a rotating roller made of Steel 45. The proposed method consists in measuring the limiting wetting angle of a coolant drop on the surface of the workpiece and calculating the derived empirical dependence of the coolant efficiency coefficient on the lubricating effect.","PeriodicalId":42889,"journal":{"name":"Obrabotka Metallov-Metal Working and Material Science","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the coolant lubricating properties based on its density and wetting effect\",\"authors\":\"A. Kisel’, V. Churankin\",\"doi\":\"10.17212/1994-6309-2023-25.2-6-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction. The processes occurring in the cutting zone contribute to the rapid wear of the cutting tool and a decrease in the quality of the workpiece. It is possible to reduce the impact of negative factors during metal cutting through a rational choice of coolant. The aim of the work is to develop a methodology for the accelerated assessment of the coolant lubricating properties. Methods. Experimental studies of the lubricating effect of seven different grades of coolant, during friction of a T15K6 (15% TiC–79% WC–6% Co) hard alloy pad and a rotating roller made of carbon structural Steel 45 (0.45% C) are presented. As a parameter of coolant efficiency in terms of lubricating effect, paper proposes an efficiency coefficient Kc, which is equal to the ratio between the friction coefficient that occurs when using coolant and the friction coefficient during friction without coolant. The lower the coefficient Kc, the more effective this coolant is in terms of lubricating effect. Results. Empirical dependences of the coefficient Kc on the coolant density ρ and the limiting wetting angle Θ (Kc = f(ρ;Θ)) are established. Since the low significance of the parameter ρ is established, the formula for the dependence of the Kc only on the limiting wetting angle Θ (Kc = f(Θ)) is established in the work. It is established that the dependence formula (Kc = f(Θ) provides the highest accuracy of calculations. Discussion. After evaluating the research results presented in this paper, the following conclusions are made: 1) the paper establishes the influence of the coolant density and the limiting wetting angle on the coolant efficiency coefficient for the lubricating effect determined for the friction between a roller made of Steel 45 and a pad made of T15K6 alloy: Kc = f(ρ;Θ) and Kc = f(Θ); 2) the greatest accuracy of calculations from 2.75 to 15% is provided by the formula for the dependence Kc = f(Θ); 3) the dependence Kc = f(Θ)is proposed to be used for the method for the accelerated assessment of the coolant lubricating properties during friction of a pad made of T15K6 alloy and a rotating roller made of Steel 45. The proposed method consists in measuring the limiting wetting angle of a coolant drop on the surface of the workpiece and calculating the derived empirical dependence of the coolant efficiency coefficient on the lubricating effect.\",\"PeriodicalId\":42889,\"journal\":{\"name\":\"Obrabotka Metallov-Metal Working and Material Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Obrabotka Metallov-Metal Working and Material Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17212/1994-6309-2023-25.2-6-16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Obrabotka Metallov-Metal Working and Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17212/1994-6309-2023-25.2-6-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

介绍。在切削区发生的过程导致刀具的快速磨损和工件质量的下降。通过合理选择冷却剂,可以减少金属切削过程中负面因素的影响。这项工作的目的是开发一种加速评估冷却剂润滑性能的方法。方法。研究了7种不同冷却剂对T15K6 (15% TiC-79% WC-6% Co)硬质合金衬垫和45型碳素结构钢(0.45% C)旋转滚轮的摩擦润滑效果。本文提出了一个效率系数Kc,作为衡量冷却剂润滑效果的效率参数,它等于使用冷却剂时的摩擦系数与不使用冷却剂时摩擦系数之比。系数Kc越低,冷却液的润滑效果越好。结果。建立了系数Kc与冷却剂密度ρ和极限润湿角Θ (Kc = f(ρ;Θ))的经验依赖关系。由于确定了参数ρ的低显著性,因此在工作中建立了Kc仅依赖于极限润湿角Θ (Kc = f(Θ))的公式。建立了相关性公式(Kc = f(Θ))提供了最高的计算精度。讨论。通过对本文研究结果的综合评价,得出以下结论:1)建立了45钢滚子与T15K6合金垫片摩擦润滑效果的冷却剂密度和极限润湿角对冷却剂效率系数的影响:Kc = f(ρ;Θ)和Kc = f(Θ);2)由相关性Kc = f的公式(Θ)提供2.75 ~ 15%的最大计算精度;3)提出了利用Kc = f(Θ)关系式加速评价T15K6合金衬垫与45钢旋转滚轮摩擦时冷却液润滑性能的方法。该方法包括测量工件表面冷却液滴的极限润湿角,并计算推导出的冷却液效率系数对润滑效果的经验依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting the coolant lubricating properties based on its density and wetting effect
Introduction. The processes occurring in the cutting zone contribute to the rapid wear of the cutting tool and a decrease in the quality of the workpiece. It is possible to reduce the impact of negative factors during metal cutting through a rational choice of coolant. The aim of the work is to develop a methodology for the accelerated assessment of the coolant lubricating properties. Methods. Experimental studies of the lubricating effect of seven different grades of coolant, during friction of a T15K6 (15% TiC–79% WC–6% Co) hard alloy pad and a rotating roller made of carbon structural Steel 45 (0.45% C) are presented. As a parameter of coolant efficiency in terms of lubricating effect, paper proposes an efficiency coefficient Kc, which is equal to the ratio between the friction coefficient that occurs when using coolant and the friction coefficient during friction without coolant. The lower the coefficient Kc, the more effective this coolant is in terms of lubricating effect. Results. Empirical dependences of the coefficient Kc on the coolant density ρ and the limiting wetting angle Θ (Kc = f(ρ;Θ)) are established. Since the low significance of the parameter ρ is established, the formula for the dependence of the Kc only on the limiting wetting angle Θ (Kc = f(Θ)) is established in the work. It is established that the dependence formula (Kc = f(Θ) provides the highest accuracy of calculations. Discussion. After evaluating the research results presented in this paper, the following conclusions are made: 1) the paper establishes the influence of the coolant density and the limiting wetting angle on the coolant efficiency coefficient for the lubricating effect determined for the friction between a roller made of Steel 45 and a pad made of T15K6 alloy: Kc = f(ρ;Θ) and Kc = f(Θ); 2) the greatest accuracy of calculations from 2.75 to 15% is provided by the formula for the dependence Kc = f(Θ); 3) the dependence Kc = f(Θ)is proposed to be used for the method for the accelerated assessment of the coolant lubricating properties during friction of a pad made of T15K6 alloy and a rotating roller made of Steel 45. The proposed method consists in measuring the limiting wetting angle of a coolant drop on the surface of the workpiece and calculating the derived empirical dependence of the coolant efficiency coefficient on the lubricating effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Obrabotka Metallov-Metal Working and Material Science
Obrabotka Metallov-Metal Working and Material Science METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.10
自引率
50.00%
发文量
26
期刊最新文献
Free vibration and mechanical behavior of treated woven jute polymer composite Analysis of mechanical behavior and free vibration characteristics of treated Saccharum munja fiber polymer composite Synthesis of Ti–Fe intermetallic compounds from elemental powders mixtures The concept of microsimulation of processes of joining dissimilar materials by plastic deformation Experimental studies of high-speed grinding rails modes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1