用食用油和珍珠岩制备聚氨酯硬质泡沫纳米复合材料及其表征

IF 3.4 4区 化学 Q2 POLYMER SCIENCE International Journal of Polymer Science Pub Date : 2023-04-11 DOI:10.1155/2023/7185367
Muntajab Sarim, M. M. Alavi Nikje, M. Dargahi
{"title":"用食用油和珍珠岩制备聚氨酯硬质泡沫纳米复合材料及其表征","authors":"Muntajab Sarim, M. M. Alavi Nikje, M. Dargahi","doi":"10.1155/2023/7185367","DOIUrl":null,"url":null,"abstract":"Modern chemical industries trend towards industrial ecology to achieve a circular economy, because of increasing environmental and economic awareness jointly. One of the most important of these industries is polyurethane, accompanied by more and more interest in using renewable polyols. The study focuses on synthesizing and characterizing polyurethane rigid foams formulated by replacing 40%, 60%, and 100% of a petrochemical polyol with a bio-polyol derived from used cooking oil, and introducing perlite and modified perlite nanoparticles into the bio-polyol. The products were evidenced by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), nuclear magnetic resonance spectral analyses, thermogravimetric analysis (TGA), and scanning electron microscopy equipped with energy-dispersive spectroscopy. The results indicate that the hydroxide value and viscosity at 25°C of the bio-polyol were around \n \n 456\n ±\n 30\n \n  mg KOH/g and 148 mPa s. Bio-polyol blends of 40% and 60% had no significant effect on the thermal properties of polyurethane systems. The lowest value of char yield was observed for the sample with a 100% bio-polyol content of 2.3%. The beneficial effects of both perlite and modified perlite particles on the 100% bio-polyol-based foam were observed as having an effective role in improving thermal stability and reconstructing cellular structure. The yield char increased to 13.2%, 14%, 14.7%, and 15% for the two filler contents 2.5% and 5%. However, the new bio-polyol has a fairly good value in industrial construction, and the perlite particles have enhanced and improved this value.","PeriodicalId":14283,"journal":{"name":"International Journal of Polymer Science","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and Characterization of Polyurethane Rigid Foam Nanocomposites from Used Cooking Oil and Perlite\",\"authors\":\"Muntajab Sarim, M. M. Alavi Nikje, M. Dargahi\",\"doi\":\"10.1155/2023/7185367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern chemical industries trend towards industrial ecology to achieve a circular economy, because of increasing environmental and economic awareness jointly. One of the most important of these industries is polyurethane, accompanied by more and more interest in using renewable polyols. The study focuses on synthesizing and characterizing polyurethane rigid foams formulated by replacing 40%, 60%, and 100% of a petrochemical polyol with a bio-polyol derived from used cooking oil, and introducing perlite and modified perlite nanoparticles into the bio-polyol. The products were evidenced by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), nuclear magnetic resonance spectral analyses, thermogravimetric analysis (TGA), and scanning electron microscopy equipped with energy-dispersive spectroscopy. The results indicate that the hydroxide value and viscosity at 25°C of the bio-polyol were around \\n \\n 456\\n ±\\n 30\\n \\n  mg KOH/g and 148 mPa s. Bio-polyol blends of 40% and 60% had no significant effect on the thermal properties of polyurethane systems. The lowest value of char yield was observed for the sample with a 100% bio-polyol content of 2.3%. The beneficial effects of both perlite and modified perlite particles on the 100% bio-polyol-based foam were observed as having an effective role in improving thermal stability and reconstructing cellular structure. The yield char increased to 13.2%, 14%, 14.7%, and 15% for the two filler contents 2.5% and 5%. However, the new bio-polyol has a fairly good value in industrial construction, and the perlite particles have enhanced and improved this value.\",\"PeriodicalId\":14283,\"journal\":{\"name\":\"International Journal of Polymer Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Polymer Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7185367\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/7185367","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

现代化工行业走向工业生态,实现循环经济,是因为环保意识和经济意识共同增强。这些行业中最重要的一个是聚氨酯,随着越来越多的人对使用可再生多元醇的兴趣。该研究的重点是合成和表征聚氨酯刚性泡沫,其配方是用从废食用油中提取的生物多元醇替代40%、60%和100%的石化多元醇,并在生物多元醇中引入珍珠岩和改性珍珠岩纳米颗粒。通过透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、核磁共振光谱分析(nmr)、热重分析(TGA)和扫描电子显微镜(sem)进行了表征。结果表明,该生物多元醇在25℃时的氢氧化物值为456±30 mg KOH/g,黏度为148 mPa s。40%和60%的生物多元醇共混物对聚氨酯体系的热性能没有显著影响。100%生物多元醇含量为2.3%时,炭产率最低。珍珠岩和改性珍珠岩颗粒对100%生物多元醇基泡沫的有益作用被观察到,它们具有改善热稳定性和重建细胞结构的有效作用。当添加2.5%和5%的填料时,炭产率分别提高到13.2%、14%、14.7%和15%。然而,新型生物多元醇在工业建设中具有较好的应用价值,珍珠岩颗粒增强和改善了这一价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and Characterization of Polyurethane Rigid Foam Nanocomposites from Used Cooking Oil and Perlite
Modern chemical industries trend towards industrial ecology to achieve a circular economy, because of increasing environmental and economic awareness jointly. One of the most important of these industries is polyurethane, accompanied by more and more interest in using renewable polyols. The study focuses on synthesizing and characterizing polyurethane rigid foams formulated by replacing 40%, 60%, and 100% of a petrochemical polyol with a bio-polyol derived from used cooking oil, and introducing perlite and modified perlite nanoparticles into the bio-polyol. The products were evidenced by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), nuclear magnetic resonance spectral analyses, thermogravimetric analysis (TGA), and scanning electron microscopy equipped with energy-dispersive spectroscopy. The results indicate that the hydroxide value and viscosity at 25°C of the bio-polyol were around 456 ± 30  mg KOH/g and 148 mPa s. Bio-polyol blends of 40% and 60% had no significant effect on the thermal properties of polyurethane systems. The lowest value of char yield was observed for the sample with a 100% bio-polyol content of 2.3%. The beneficial effects of both perlite and modified perlite particles on the 100% bio-polyol-based foam were observed as having an effective role in improving thermal stability and reconstructing cellular structure. The yield char increased to 13.2%, 14%, 14.7%, and 15% for the two filler contents 2.5% and 5%. However, the new bio-polyol has a fairly good value in industrial construction, and the perlite particles have enhanced and improved this value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: The International Journal of Polymer Science is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles on the chemistry and physics of macromolecules.
期刊最新文献
Characterisation of Luffa cylindrica Fibre from Cameroon for Use in Composites: Effect of Alkaline Treatment Experimental Investigation on the 3D Printing of Nylon Reinforced by Carbon Fiber through Fused Filament Fabrication Process, Effects of Extruder Temperature, and Printing Speed Fracture Resistance of Endodontically Treated Teeth Restored Using Multifiber Posts Compared with Single Fiber Posts Comparison of the Film Properties of Lemon and Sour Cherry Seed Essential Oil-Added Glycerol and/or Sorbitol-Plasticized Corn, Potato, Rice, Tapioca, and Wheat Starch-Based Edible Films Thermal and Mechanical Performance of 3-Phase Polymer Composite Panels for Structural Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1